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Introduction

In this master’s thesis, Artin groups are studied, with an emphasis on right-
angled Artin groups. Central to this work is the interplay between the algebraic
structures and their geometric realizations.

Most of the work done in this thesis is a summary of papers/books of other
people. The books/papers that were of the most use were primarily the book
from Michael Davis [24], not only for its information about Coxeter complexes
but also for its easy introductions into simplicial complexes. The papers by
Huang [33, 32, 31] forms a basis of Chapter 5 and Chapter 6.

We start with an introduction to Coxeter groups and their Tits representations in
Chapter 1, this Tits representation serves as the basis for constructing the Davis
complex in Section 2.7. Using this complex, the Salvetti complex is constructed
in Section 2.9, a topological space whose fundamental group is precisely the Artin
group associated with the Coxeter group we start with. A different equivalent
definition (Definition 2.9.2) for the Salvetti complex can be made via a graph
product for right-angled Artin groups, we will use the same idea later to define
the exploded Salvetti complex (Section 5.2).

An analogous concept to the Davis complex for a Coxeter group is the Deligne
complex for an Artin group. In the case of a right-angled Artin group, this
complex is equivalent to a (Tits-)building (Section 4.5), where the chambers
correspond to the elements of the Artin group. We also discuss the unresolved
problem of the K(π, 1)-conjecture, and what equivalent statements there are in
terms of the Salvetti complex and the Deligne complex.

Furthermore, for right-angled Artin groups, we examine structures such as the
exploded Salvetti complex and the extension complex. The extension complex
brings us to the last chapter since it is of interest in the study of the quasi-
isometric classifications of right-angled Artin groups. The universal cover of
the exploded Salvetti complex, like that of the Salvetti complex, is a CAT(0)-
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cube complex and has a natural connection to the geometric realization of the
associated building. We will use this connection to prove some quasi-isometric
properties of right-angled Artin groups. In this last chapter we will determine
some classes of rigid right-angled Artin groups (i.e. they are quasi-isometric if
and only if they are isomorphic). We will see that all right-angled Artin group
with defining graph a tree of diameter at least 3 are quasi-isometric. Finely in
Section 6.9 we will define a doubling argument on the defining graph of a right-
angled Artin group such that the Artin group of our new graph is quasi-isometric
to our Artin group we started with (Theorem 6.9.4). Some of the theorems we
will discuss that are some what novel are the following.

� Theorem 2.12.1, where we prove some isomorphisms between Artin groups
and quotients of fundamental groups. However, that fact that this theorem
will be true came from [18, footnote page 149].

� Theorem 4.6.4, herein we prove that the Deligne complex of non-right-
angled Artin groups are never buildings.

� Theorem 6.9.4 (ii) & (iii), in (ii) we will construct a quasi-isometry between
the universal cover of the Salvetti complex of a right-angled Artin group
AΓ and that of another right-angled Artin group with defining graph a
k-double of Γ. More importantly in (iii) we give a partial solution to the
question described in Remark 6.3.6, that is, we prove that the extension
complexes of these Artin groups are isomorphic.

� In Theorem 6.9.8 and Corollary 6.9.10, we prove that the k-doubling argu-
ment (Theorem 6.9.4) is insufficient to find quasi-isometries between any
two right-angled Artin groups whose defining graphs are trees of diameter
at least 3.

To become familiar with the various structures and topics addressed in this
thesis, we suggest that the reader to initially study the complexes presented
in Chapter 2. The discussion in Chapter 4 then shows the connections with
buildings. Although Chapter 5 is technically dense, and many of its detailed
properties are not required for the later sections, the reader may opt to proceed
directly to Chapter 6. In this final chapter, Theorem 6.9.4 and the subsequent
examples shows an application of the Salvetti complex.
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1
Preliminaries

Coxeter groups and Artin groups are both defined by a graph with labeled edges,
these graphs are sometimes called unoriented Dynken diagrams or Coxeter dia-
grams. In this Chapter we will introduce Artin groups and Coxeter groups by
defining them in this way. We will also define a representation of a Coxeter group
as a subgroup of GLn(R).

1.1 Defining graph

Definition 1.1.1. Consider a finite simple graph Γ with vertex set V (Γ) =
{si | i ∈ I} for a certain index set I, where each edge has a label in N≥2. For
two vertices si, sj ∈ V (Γ), if there is an edge between the two, we will denote
mij ∈ N≥2⊔{∞} to be the label of this edge. If si and sj are not connected, then
we set mij :=∞. For i = j, we set mii := 1. By definition, we have mij = mji.

Remark 1.1.2. In other literature one regularly uses the convention to not draw
edges of label 2 and draw edges between vertices where mij = ∞. That said in
this thesis, two vertices will be non-adjacent if and only if mij =∞.

Using a labeled graph we can give an explicit representation of these groups. In
section 1.2 we will represent the Coxeter group differently as reflections of Rn.

Definition 1.1.3. For Γ a graph as in Definition 1.1.1, we denote AΓ for the
associated Artin group1, and WΓ for the associated Coxeter group, defined as

1Artin groups are named after Emil Artin for his early work on braid groups. Jacques Tits
developed this theory more generally, hence, they are also called “Artin-Tits groups”.
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follows

AΓ :=

〈
si ∈ V (Γ) | sisjsi · · · sisj · · ·︸ ︷︷ ︸

mij terms

= sjsisj · · · sjsi · · ·︸ ︷︷ ︸
mij terms

〉
;

WΓ :=

〈
si ∈ V (Γ) | sisjsi · · · sisj · · ·︸ ︷︷ ︸

mij terms

= sjsisj · · · sjsi · · ·︸ ︷︷ ︸
mij terms

, (si)
2 = 1

〉

=
〈
si | (sisj)mij = 1, (si)

2 = 1
〉
.

We say that WΓ and AΓ have type or defining graph Γ and rank n := |V (Γ)|.

Example 1.1.4. (i) Consider Γ := •
a

•
b2
. We have that WΓ = Z/2Z ×

Z/2Z and AΓ = Z × Z. If Γ := •
a

•
b
, then we change the products to

free products, i.e. WΓ = Z/2Z ∗ Z/2Z and AΓ = Z ∗ Z.

(ii) The symmetric group on 3 elements is a Coxeter group of type Γ := •
a

•
b3
.

The Artin group of type Γ is the braid group on 3 strands. There has been
done extensive research on braid groups. See also Example 3.2.2 and the
paper about the braid group on four strands [17] in context of Artin groups.

Remark 1.1.5. (i) As in Example 1.1.4, we see that the Coxeter group is
sometimes finite. All finite Coxeter groups have been classified in [22]. In
contrast, every Artin group is infinite.

(ii) Whenever we say Λ a subgraph of Γ we always mean an induced subgraph,
i.e. the largest subgraph in Γ that contains only the vertices V (Λ).

(iii) Clearly, for every subgraph Λ ⊆ Γ there exists a subgroup of the form〈
s | s ∈ V (Λ)

〉
WΓ
≤ WΓ. It happens to be the case thatWΛ

∼=
〈
s | s ∈ V (Λ)

〉
WΓ

([21, Lemma 1.1.1]). Similarly, for Artin groups isAΛ
∼=
〈
s | s ∈ V (Λ)

〉
AΓ
≤

AΓ ([21, Corollary 3.25] and was first proven by van der Lek [50, Theorem
4.12]).

Definition 1.1.6. Consider an Artin group AΓ and the associated Coxeter group
WΓ with rank n and defining graph Γ with edge labels (mij)ij.

(i) The Artin group AΓ is of finite type (also called spherical) if WΓ is finite
and of infinite type if WΓ is infinite.

(ii) The subgroups of the form WΛ (respectively AΛ) of WΓ (respectively AΓ)
for a subgraph Λ of Γ are called special subgroups. If, in addition, WΛ is
finite we say that WΛ (respectively AΛ) is a spherical subgroup.

(iii) If for every pair i, j ∈ I we have mij ∈ {2,∞}, then we call WΓ a right-
angled Coxeter group and AΓ a right-angled Artin group (in short RACG
and RAAG, respectively). We will also call the defining graph Γ right-
angled.
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(iv) The Coxeter matrix M is the n× n matrix M := (mij)ij.

(v) A special coset of WΓ (respectively AΓ) is a coset of a special subgroup
WΛ ≤ WΓ (respectively AΛ ≤ AΓ). A spherical coset of WΓ (respectively
AΓ) is a coset of a spherical subgroup WΛ ≤ WΓ(respectively AΛ ≤ AΓ).
The set of special cosets ofWΓ (respectively AΓ ) is denoted asWΓS (respec-
tively AΓS) and the set of spherical cosets as WΓSf (respectively AΓSf ).
Similarly, let Sf ⊆ P(V (Γ)) be the poset of spherical subsets of V (Γ) (i.e.
the subsets Λof Γ for which WΛ is finite). Hence, we have

WΓSf := {gWΛ | g ∈ WΓ,Λ subgraph of Γ and WΛ is finite};
AΓSf := {gAΛ | g ∈ AΓ,Λ subgraph of Γ and WΛ is finite}.

(vi) The Coxeter group and Artin group are of FC-type, if for every clique Λ ⊆ Γ
the group WΛ is finite.

Throughout this thesis the following Lemma we will sometimes need.

Lemma 1.1.7. Let WΓ be a Coxeter group with defining graph Γ. Suppose
s1s2 . . . sk = 1 for si ∈ V (Γ) with ∀i, si ̸= 1, then k is even.

Proof. Exercise.

1.2 Tits representation

A Coxeter group WΓ can be naturally represented as a group generated by a set
of reflections in Rn with n = |V (Γ)|.

Example 1.2.1. Let Γ := •
a

•
bm
. Consider ã and b̃ two straight lines in R2

such that they intersect in one point and have an angle of π
m

between them, see
Figure 1.2.1. Consider the two reflection of R2 along these hyperplanes ã and
b̃, these are bijective transformations of R2. The group generated by these two
reflections is isomorphic to WΓ.

ã

b̃

π
m

Figure 1.2.1: Reflection hyperplanes in R2.
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We want to find a representation like in Example 1.2.1 for arbitrary Coxeter
groups. A lot more information about reflection systems, pre Coxeter systems,
Coxeter systems, affine reflection groups, etc. can be found in [24, Chaper 3].

Definition 1.2.2. ForWΓ a Coxeter group, the Schläfli matrix CMΓ is the n×n

(n = |Γ|) matrix CMΓ :=

(
−cos

(
π
mij

))
ij

where we set cos
(
π
∞

)
:= 1.

Example 1.2.3. Let Γ := •
a

•
b3

then the Schläfli matrix is

2CMΓ =

[
−2 cos(π) −2 cos(π

3
)

−2 cos(π
3
) −2 cos(π)

]
=

[
2 −1
−1 2

]
.

Definition 1.2.4 (Tits representation [39, Section 2]). SupposeWΓ is a Coxeter
group with rank n and {s1, s2, . . . , sn} := V (Γ) the generating set of WΓ and let
CMΓ be the Schläfli matrix. Consider Rn as a vector space with standard basis
{e1, e2, . . . , en}, then we define a linear map ri for every si:

ri : Rn → Rn :

v 7→ v − 2
(
vTCMΓei

)
ei.

One can verify (See [10, Proposition 4.1.2]) that every ri is a bijective involutive
linear map, that there is a hyperplane that is point-wise fixed by ri and that the
order of ri ◦ rj is mij (See [24, Lemma 6.12.3]), where mij is the label of the edge
between vertices si, sj ∈ V (Γ).

Example 1.2.5. We carry on from Example 1.2.3. The maps r1 and r2 are the
following.

r1 : R2 → R2 :

(
x
y

)
7→

(
y − x
y

)
;

r2 : R2 → R2 :

(
x
y

)
7→

(
x

x− y

)
.

The fix hyperplanes are y = 2x and y = 1
2
x respectively. However, in this case

these maps are not orthogonal reflections (in the meaning that v 7→ −v if v was
orthogonal to the fix hyperplanes). For this to be an orthogonal reflection we
choose vectors α1 and α2 such that

α1 · α2 = (CMΓ)12;

αi · αi = (CMΓ)ii = 1.

This is satisfied if we choose α1 := (0, 1)T and α2 := (
√
3
2
,−1

2
)T . Then we can

define reflections as follows

r̃i : R2 → R2 : v 7→ v − 2(αi · v)αi.

6



These orthogonal reflections have reflection hyperplanes y = 0 and y =
√
3x.

These two lines have an angle of π/3 between them.

Definition 1.2.6 (Orthogonal reflections). The Tits representation gives us lin-
ear reflections (i.e. linear involutive maps that fix a hyperplane). If WΓ is finite
then one can prove ([21, page 598] and [18, page 143]), that we can find αi (as in
Example 1.2.5), such that WΓ can be represented as orthogonal reflections. For
finite Coxeter group we will always refer to these orthogonal reflections when we
are talking about the Tits-representation.

When we will need these representation as reflections we will almost always be
working with finite Coxeter groups (except for Section 3.3).

For more information about these reflection systems we recommend [24] and [1].

Theorem 1.2.7 ([39, Theorem 2.4.], [10, Theorem 4.1.3]). For every Coxeter
groupWΓ, its Tits representation is faithful (i.e.WΓ

∼=
〈
ri | i ∈ {1, 2, . . . , n}

〉
GLn(R)

≤
GLn(R)). Moreover, this isomorphism exactly sends si 7→ ri for all si ∈ V (Γ).

Proof. See [10, Theorem 4.1.3].

Remark 1.2.8. Consider the Tits representation in Definition 1.2.4 of a Coxeter
group WΓ. Let vs be the unique (up to sign) unit vector orthogonal to the fixed
hyperplane of rs. It could be that {vs ∈ R|V (Γ)| | s ∈ V (Γ)} is a linearly
independent set. In this case we replace each matrix Mrs (which is the matrix
corresponding to the linear map rs : Rn → Rn) with its inverse transpose M−T

rs

(see [39, Remark 2.8]). From now on we assume without loss of generality that
{vs ∈ Rn | s ∈ V (Γ)} is linearly independent.

We will now define the fundamental cone, we will need this later to define the
fundamental domain of this action (Definition 2.7.2 and Remark 2.7.4 (ii)). We
will also need this in the discussion of the K(π, 1) conjecture (Chapter 3).

Definition 1.2.9 (Simplicial cone). Let v1, v2, . . . , vr a set of linear independent
vectors in Rn. The simplicial cone C generated by v1, v2, . . . , vr is the set of
vectors that are linear combination of vi with positive scalers, i.e.

C = {λ1v1 + λ2v2 + · · ·λrvr | λi ∈ R+}.

Definition 1.2.10 (fundamental cone [39, Definition 2.6]). Suppose WΓ is a
Coxeter group with n := |V (Γ)| and let {vs ∈ Rn | s ∈ V (Γ)} be a set of
vectors such that vs is orthogonal to the fixed hyperplane in Rn of the linear
map ri (constructed in Definition 1.2.4). The fundamental cone of WΓ is the
following simplicial cone

cone(Γ) :=

 ∑
s∈V (Γ)

λsvs | λs ∈ R+

 .

7



Example 1.2.11. (i) Let Γ := •
a

•
b3
, then we have two generators, they

correspond to two reflection hyperplanes in R2 and are drawn in Figure
1.2.2. The space colored in red is the fundamental cone, the orbit if this
space tiles the whole plane R2.

ã

b̃

Figure 1.2.2: Reflection hyperplanes of WΓ.

(ii) Now let Γ :=
•b

•
a

•c
3 3

3 , this is an infinite Coxeter group2. Despite that,

there is still a way such that WΓ can be represented as a group acting on
R2 by reflections. We can choose three lines such that they all intersect
each other in an π

3
angle, as seen in Figure 1.2.3. Here again the orbit of

the space enclosed by all the three lines will tile the whole R2 plane. If we
draw a vertex inside this enclosed space, and draw the orbit of this vertex
we will get the Cayleygraph of WΓ (more of this see section 2.7).

•

•

•

•

•

•

•
•

• •

• •

•

•

•

•

•

ã

b̃c̃

•

•

•

•

•

•

•
•

• •

• •

•

•

•

•

•

Figure 1.2.3: Reflection hyperplanes in R2.

2This Coxeter group is the “smallest” example of a non FC-type Coxeter group.
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2
Artin groups and associated complexes

2.1 Simplicial complexes

Readers familiar with simplicial complexes, cube complexes, and geometric real-
izations may proceed directly to Section 2.5. We need the following definitions
to define the Davis complex, Deligne complex, etc. which will be complexes
showing geometric and topological properties of our Coxeter and Artin groups.

Definition 2.1.1. An abstract simplicial complex consists of a set S and a set of
finite subsets S ⊆ P(S), whose elements are called simplices. This set satisfies
the following conditions:

(i) The intersection of two simplices is a simplex, i.e. (∀A,B ∈ S)(A∩B ∈ S);

(ii) Every element s in the set S forms a simplex {s}, i.e. (∀s ∈ S)({s} ∈ S);

(iii) Every subset of a simplex is a simplex, i.e. (∀T ∈ S)(∀T ′ ⊆ T )(T ′ ∈ S).

A k-simplex is a subset T ∈ S with |T | = k + 1. The dimension of a simplex
T is |T | − 1. A subcomplex of a simplicial complex is a subset T ⊆ S that also
satisfies the axioms of an abstract simplicial complex (possibly for a smaller set
S ′ ⊆ S). The k-skeleton S(k) is the subcomplex of S consisting of all simplices
of dimension ≤ k. A vertex of S is a 0-simplex, and an edge is a 1-simplex.

Definition 2.1.2. Consider P a poset. The abstract simplicial complex of a
poset P is the simplicial complex

Flag(P ) := {v ∈ P(P ) | ∀a, b ∈ v, a ≤ b ∨ a ≥ b}.

One can check that Flag(P ) satisfies the axioms of Definition 2.1.1.

Example 2.1.3. Consider Rn with standard basis e1, e2, . . . , en and let Rn ⊇
S := {{ei} | i ∈ {1, 2, . . . , n}} ∪ {{ei, ej} | i ̸= j ∈ {1, 2, . . . , n}} ∪ · · · ∪
{{e1, e2, . . . , en}}. We can visualize this as follows: a 0-simplex is a real point ei
in Rn, a 1-simplex is a real line segment form ei to ej, etc. For n = 3, Figure
2.1.1 shows this visualization.

9



• •

•

Figure 2.1.1: Geometric realization of S in R3.

Definition 2.1.4. The convex hull of the standard basis e1, e2, . . . en ∈ Rn is
called the standard n-simplex ∆n. This is the abstract simplicial complex from
Example 2.1.3. Consider S an abstract simplicial complex. The geometric re-
alization Geom(S) of S consists of one copy of ∆n for every n-simplex T ∈ S.
This copy, denoted as σT , is the span of the vertices si ∈ T (0), where the vertices
of σT correspond to the singletons of T . If T ′ ∈ S and T ′(0) ⊆ T (0), then ∆|T ′| is
attached to ∆|T | in a natural manner, such that σT ′ is a subcomplex of σT .

Definition 2.1.5. Let S be an abstract simplicial complex, then the barycentric
subdivision of S is the abstract simplicial complex Flag(S), where S is seen as a
poset for the inclusion, i.e.

Flag(S) := {V ∈ P(S) | ∀A,B ∈ V,A ⊆ B ∨ A ⊇ B}.

Example 2.1.6. Consider the poset P := {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
This poset also satisfies the axioms of a simplicial complex. The geometric real-
ization Geom(S) of S := P is given in Figure 2.1.1. The geometric realization
Geom(Flag(S)) is the barycentric subdivision of Geom(S), given in Figure 2.1.2.

• •

•

•
•

• •

Figure 2.1.2: Barycentric subdivision of S.

Definition 2.1.7. Suppose S is an abstract simplicial complex of a set S. If
for every finite subset T ⊆ S the condition: that if for every pair of elements
t1, t2 ∈ T that {t1, t2} ∈ S, then we have that T ∈ S, is satisfied, then we call S
a flag complex, i.e.

(∀T ⊆ S)
((
∀t1, t2 ∈ T, {t1, t2} ∈ S

)
⇒ T ∈ S

)
.

Intuitively, a flag complex is an abstract simplicial complex S with the property
that whenever we have a clique in S(1), the complex includes the simplex spanned
by those vertices. In other words, you fill this part of the geometric realization
in with a simplex ∆n ⊆ R.
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Remark 2.1.8. Clearly, every abstract simplicial complex formed by a poset
(see Definition 2.1.2) is a flag complex.

Definition 2.1.9 (CW-complex). Consider Dk := {x ∈ Rk | |x| ≤ 1}, this is a
k-cell. A (finite dimensional) CW-complex is a space constructed by attaching
k-cells to each other using the following procedure. In step 0, X0 is just a union
of 0-cells (i.e. a set of vertices). In step k, we attach k-cells to Xk−1 as follows:
Consider a k-cell Dk and a continuous map ϕ : ∂Dk → Xk−1. This identifies the
boundary of Dk to a subset of Xk−1. Suppose one does this for every Dk

i with
i ∈ Ik a certain index set. We get the space Xk := Xk ∪

⋃
i∈Ik D

k
i . After n ∈ N

steps, the resulting space X :=
⋃
k≥0Xk is a CW-complex. The set X(k) is the

subset of l-cells contained in X with l ≤ k (also called the k-skeleton).

Definition 2.1.10. Let X and Y be two CW-complexes, then a continuous map
q : X → Y is cellular if

q
(
X(n)

)
⊆ Y (n) for all n.

Note that it is also allowed that q
(
X(n)

)
⊆ Y (k) ⊆ Y (n) for k ≤ n.

2.2 Cube complexes

Cube complexes are useful in the study complexes associated to right-angled
Coxeter and Artin groups, as well as for right-angled buildings. We first define
a general notion of a polytope.

Definition 2.2.1 ([24, Definition A.1.1]). A convex polytope or convex cell in
Rn is the convex hull of a finite set of points. Its dimension is the dimension of
the space it spans.

Definition 2.2.2 ([24, Section A.1]). Let C be a convex polytope in Rn.

(i) A supporting hyperplane of C is hyperplane H of Rn such that H ∩ C ̸= ∅
and C is contained in the closure of one of the two half-spaces bounded by
H.

(ii) A face F of C is a convex polytope that is formed by an intersection H∩C
with a supporting hyperplane H and C. We denote the set of faces of C
by Face(C).

(iii) The barycentric subdivision of a convex polytope C is the abstract simplicial
complex Flag

(
Face(C)

)
.

(iv) A convex cell complex is a collection Ω of convex polytopes (also called
cells) such that:

(1) Every face of every cell of Ω is itself a cell, i.e.

(∀C ∈ Ω)(∀F ∈ Face(C))(F ∈ Ω);

11



(2) Every two cells of Ω are either disjoint or their intersection is a face
of both cells, i.e.

(∀C,C ′ ∈ Ω)
(
C ∩ C ′ = ∅ ∨ C ∩ C ′ ∈ Face(C) ∩ Face(C ′)

)
.

The elements of Ω are called cells.

Definition 2.2.3 (Cube complex [46, Section 1.1]). A cube complex is a space
built from cubes of arbitrary dimension glued together along their faces, i.e. a
convex cell complex constructed from a union of Euclidean unit cubes [0, 1]n ⊆
Rn. Moreover, Let X be a cube complex then we define

(i) The induced metric on X is the metric constructed from the piecewise
metric on every k-cube.

(ii) A subcomplex of X is a cubecomplex formed by a subset of cubes of X
glued together in the same way.

(iii) The k-skeleton of a cube complex is the subcomplex formed by forgetting
all n-cubes with n > k.

Definition 2.2.4 (Link of a cube complex). Let X be a cube complex and let
v ∈ X be a vertex. The link of v in X, denoted by Lk(v,X), is the complex
defined as follows:

� Vertices: Each edge (1-cell) containing v corresponds to a vertex in
Lk(v,X).

� Simplices: Every time there exists a (k + 1)-dimensional cube in X con-
taining v, then the k vertices that correspond to the k edges of this cube
that contain v spans a k-simplex in Lk(v,X).

In general this does not have to be a simplicial complex. It could be that there
are more then one k-simplex between the same set of points (See Figure 2.3.2 as
example).

Intuitively the link of a vertex v, is a complex, which shows the local structure
of cells that contains v. For just graphs this is even simpler:

Definition 2.2.5. Let Γ be a graph and v ∈ V (Γ) a vertex. Then we denote
Lk(v) :=

〈
w ∈ V (Γ) | w, v ∈ E(Γ)

〉
to be the subgraph induced by its adjacent

vertices in Γ, and St(v) :=
〈
Lk(v) ∪ {v}

〉
Γ
to be the subgraph induced by v and

its neighbors.

2.3 CAT(0) cube complexes

It will be the case that both the Davis complex and the Deligne complex (that we
will introduce in Section 2.7 and Section 2.10) of Right-angled Artin groups are
CAT(0) cube complexes. For a more in-depth look at CAT(0)-cube complexes
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we refer to the book [46] of CAT(0) cube complexes by Schwer. We first define
what a geodesic metric space is.

Definition 2.3.1 ([36, Definition 5.3.1]). Let (X, dX) be a metric space and
x, y ∈ X be two points.

(i) A geodesic τ between x and y is a isometric embedding τ : [0, L]→ X from
the closed interval [0, L] ⊆ R to X, i.e.(

∀t, t′ ∈ [0, L]
) (
|t− t′| = dX

(
τ(t), τ(t′)

))
,

such that τ(0) = x, τ(L) = y.

(ii) The space (X, dX) is called a geodesic metric space or geodesic space if for
every pair x, y ∈ X there exists a geodesic τ between x and y.

(iii) Let x, y, z ∈ X be three points such that for each pair there is a geodesic
τx,y, τy,z and τz,x respectively. Then τx,y([0, 1]) ∪ τy,z([0, 1]) ∪ τz,x([0, 1]) =:
∆x,y,z is called a geodesic triangle.

Definition 2.3.2. Let ∆ := {x⃗ ∈ R2 | x⃗ ∈ [(0, 0), (1, 0)] ∪ [(0, 0), (1/2,
√
3/4)] ∪

[(1/2,
√

3/4), (1, 0)]}. This is just a triangle in R2 with length 1 for every edge3.
In the case of Definition 2.3.1 (iii), suppose ∆x,y,z is a geodesic triangle in X,
then there is a natural bijective continuous map π : ∆→ ∆x,y,z, such that

π : [(0, 0), (1, 0)] →̃ [0, 1]
τx,y−−→ X;

π : [(1, 0), (1/2,
√

3/4)] →̃ [0, 1]
τy,z−−→ X;

π : [(1/2,
√

3/4), (0, 0)] →̃ [0, 1]
τz,x−−→ X.

Definition 2.3.3 (CAT(0) space). Let (X, d) be a geodesic space. Then X is
CAT(0) if for all x, y, z ∈ X and ∆x,y,z a geodesic triangle, we have

dR2(p, q) ≥ dX(π(p), π(q)) ∀p, q ∈ ∆2. (2.1)

If X is only locally CAT(0) (i.e. for every point there is a neighborhood of this
point such that the relative topology in this neighborhood is CAT(0)), then we
call X non-positively curved.

Definition 2.3.4 (Proper metric space). A metric space is proper if sets are
compact if and only if they are bounded and closed.

In this thesis our metric spaces will always be with proper metric spaces.

Remark 2.3.5. The geodesic triangle between three points does not need to
be unique, so in Definition 2.3.3 the inequality (2.1) needs to be satisfied for
every possible geodesic triangle between three points. Intuitively, one can have

3Here [(a, b), (c, d)] is just the line segment {t · (a, b) + (1− t) · (c, d) | t ∈ [0, 1]}.
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the following picture in mind: “triangles in our CAT(0) space are squashed
compared to triangles in R2”.

• •

•

• •

•

Figure 2.3.1: Comparing geodesic triangle in R2 with those in a CAT(0) space.

Example 2.3.6. (i) Let T be a tree with metric d the path metric, then (T, d)
is clearly a CAT(0)-space.

(ii) Consider the sphere S2 ⊆ R3, this space is not CAT(0); moreover, in this
space, for every nontrivial geodesic triangle, the inequality (2.1) is reversed.

We will give some properties of CAT(0) spaces. Later the point will be to prove
that complexes on which for example Artin groups act geometrically will be
CAT(0). Spaces that are CAT(0) have a nice structure (Theorem 2.3.7, Lemma
2.3.17), and this we will use for the K(π, 1) conjecture and for quasi-isometric
classifications of right-angled Artin groups.

Theorem 2.3.7 ([24, Theorem I.2.6]). A complete CAT(0)-space is contactable4.

Proof. See [46, Proposition 3.8 (2)].

Hence, these spaces are always simply connected.

Definition 2.3.8. A CAT(0)-cube complex is a cube complex which is CAT(0)
for the induced metric on the cube complex (see Definition 2.2.3 (i)).

The following easy criterion to be a locally CAT(0) cube complex we will often
use (for example in Theorem 3.3.10 and Theorem 5.2.12, to prove that a right-
angled Salvetti complex is non-positively curved).

Theorem 2.3.9 (Gromov’s Link Condition for Cube Complexes [46, Theorem 4.43]).
A finite-dimensional cube complex is non-positively curved if and only if the link
of every vertex is a flag simplicial complex.

Theorem 2.3.10 (Gromov [35, Definition 34 & Theorem 41]). A simply con-
nected cube complex is CAT(0) if and only if the link of every vertex is a flag
simplicial complex.

Theorem 2.3.11 ([35, Theorem 31]). A cube complex is complete if and only if
there is no infinite ascending chain of cubes.

4There exist a deformation retract to a point.
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Example 2.3.12. The fact that in Theorem 2.3.9 the link needs to be a simplicial
complex, prohibits cube complexes as:

•
•v

•
•
•
Lk(v) =

•

•

• •v

•

•
•

•

•

Lk(v) =
• •

•

Figure 2.3.2: Non-CAT(0) cube complexes.

The first cube complex of Figure 2.3.2 consists of two 2-cubes which are attached
by two of their 1-faces. The link of the vertex v consists of two edges that are
two times connected by a 1-simplex. However, this is not a simplicial complex
because the intersection between simplices here is not a simplex. In the second
cube complex, the link of v is a simplicial complex but not a flag complex (the
triangle is not “filled in”).

Proposition 2.3.13 ([46, Proposition 3.11]). Let X be a complete CAT(0) space
and let F ⊆ X be a closed convex subset (in particular, a face of a cube complex).
Then for each x ∈ X, there is a unique point denoted by projF (x) ∈ F such that

dX(x, projF (x)) = inf
y∈F
{dX(x, y)}.

We call this element the projection of x on F .

Definition 2.3.14. Let X be a CAT(0) cube complex and C, C̃ ⊆ X two closed
convex subsets. Then C and C̃ are parallel if

projC(C̃) = C and projC̃(C) = C̃.

Property 2.3.15 ([33, Section 3.1]). Let X be a CAT(0) cube complex and let
e, ẽ be two 1-cubes (i.e. edges). Then e and ẽ are parallel if and only if there exist
a sequence e = e0, e1, . . . , en = ẽ of 1-cubes such ei is opposite ei+1 in a 2-cube.

Definition 2.3.16 ([16, Section 2.1]). A cellular map q : X → Y between two
CAT(0) cube complexes is cubical if for every cubeK ⊆ X, it can be decomposed
as

q : K → K̃ →̃ q(K) ⊆ Y,

where K → K̃ is a projection map from K to a face K̃ of K in X and q|K̃ is an
isometry to q(K).

Lemma 2.3.17 ([33, Lemma 4.5 & Lemma 4.6]). Let q : X → Y be a cubical
map between two CAT(0) cube complexes. Then the following hold.
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(i) If σ1 ⊆ σ2 are cubes in Y and yi ∈ σi are interior points, then there is a
natural embedding q−1(y2) ↪→ q−1(y1). This embedding is compatible with
composition and inclusion.

(ii) For every convex set A ⊆ Y , every connected component of f−1(A) is
convex.

2.4 Cayley 2-complex

We need one last definition before going the Complexes associated to Coxeter
and Artin groups. Is the Cayley 2-complex, that is a generalization of the Cay-
leygraph.

Definition 2.4.1 ([24, Section 2.2]). Let G be a finitely generated group with
generating set S. A Cayley 2-complex Cay2(G) for G is any two-dimensional
cell complex that is simply connected such that G acts on Cay2(G), and on the
vertex set this action is transitive and free.

The 1-skeleton of a Cayley 2-complex for G will always be the Cayley graph of
the group G for some generating set of G (See [24, Theorem 2.1.1]).

2.5 The nerve of a Coxeter group

The first complex we define of a Coxeter group WΓ is not much different than
the defining graph Γ.

Definition 2.5.1 (The nerve of a Coxeter group, [24, Section 7.1]). LetWΓ be a
Coxeter group. The poset SfΓ \ ∅ (where S

f
Γ := {T | T ⊆ V (Γ) & WT spherical})

(by inclusion) is an abstract simplicial complex (one trivially checks the axioms
of Definition 2.1.1) which is called the nerve of WΓ.

Intuitively the nerve of a Coxeter group with defining graph g is the simplicial
complex made out of Γ by attaching triangles if possible and if this clique forms
a spherical subgroup.

Example 2.5.2. (i) Let Γ be a graph without cycles of length 3, then the
nerve will be just Γ.

(ii) For Γ = •a •b
•c

•d we have nerve(Γ) =
•
{a}

•
{b}

•
{c}

•
{d} .

(iii) If Γ := •b

•
a

•c
3 3

3
, then the nerve is just the graph Γ, without it “filled

in” since WΓ is not spherical.

Remark 2.5.3. Clearly a subset T ⊆ V (Γ) is spherical (i.e. T ∈ SfΓ) if and only
if it spans a simplex in nerve(Γ).
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The nerve of a Coxeter group often appears, such as when considering the link
of vertices of the Coxeter cell (Theorem 2.8.4), it is used in an alternative way
of constructing the exploded Salvetti complex (Remark 5.5.18) and it is also
important in a classification of one ended Coxeter groups ([24, Theorem 8.7.2]).

However, an equally important object is Geom
(
Flag(SfΓ)

)
, that we will discuss

now.

2.6 Fundamental domain

We will now define the fundamental domain, both the Davis complex and the
Deligne complex (which we will see later in Section 2.7 and 2.10) are made up out
of complexes isomorphic to the fundamental domain (see Remark 2.11.5). We
will later also define the “real fundamental domain” (Definition 2.7.2), which is
a subset of Rn, however combinatorially these two notions will coincide.

Definition 2.6.1. Let WΓ be a Coxeter group. Its fundamental domain is the
following geometric realization of a simplicial complex, which we will denote by
KΓ

KΓ := Geom
(
flag(SfΓ)

)
where SfΓ := {T | T ⊆ S & WT spherical}.

Remark 2.6.2. We will often see the fundamental domain as cube complex as
follows. The cubes are the intervals [T1, T2] := {T ′ ∈ SfΓ | T2 ⊆ T ′ ⊆ T2} (the
dimension of a cube then coincides with |[T1, T2]| − 1). This is equivalent with

Geom
(
flag(SfΓ)

)
but forgetting the simplices that skips over a carnality (i.e. if σ

is a simplex with a = min
T∈σ(0)

(|T |) en b = max
T∈σ(0)

(|T |), if there is a t ∈ {a, a+1, . . . b}

such that there is no T ′ ∈ σ(0) with |T ′| = t then we forget about T ).

Example 2.6.3. Let Γ := •
a

•
b

•
c

n with n ∈ N>1. Then the fundamental

domain is drawn in Figure 2.6.1.

•
∅

•
{b}

•
{a, b}

•
{a}

•
{c}

•
∅

•
{b}

•
{a, b}

•
{a}

•
{c}

Figure 2.6.1: The fundamental domain and its cubical representation.
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2.7 Davis complex of a finite Coxeter group

One can construct the Davis complex CΓ for finite Coxeter group in multiple
ways. First, we will construct it in a geometric way such that CΓ is a subset of
Rn. At this point one could look back at Definition 1.2.4, to remind oneself of
the hyperplanes of the Tits- representation.

Definition 2.7.1 (WΓ-permutahedron, Coxeter cell, [24, Definition 7.3.1]). Sup-
pose WΓ a finite Coxeter group. Consider x ∈ Rn (with n := |V (Γ)|) such that
the distance to every fixed hyperplane (the fixed hyperplanes of the Tits repre-
sentation) is 1. Then the Coxeter cell is the convex cell obtained by taking the
convex closure of the set xWΓ =: CΓ (i.e. the orbit of x, where we identify WΓ

with its Tits representation).

The following definition is some literature [39] also just called the fundamental
domain. However, we will see that these objects coincide (at least combinatori-
ally).

Definition 2.7.2 (Real fundamental domain). The real fundamental domain is
the intersection with the interior of the fundamental cone (see Definition 1.2.10)
and the Coxeter cell.

ã

b̃

•1•ba

•aba • a

•
b

•
ab

Figure 2.7.1: Coxeter cell of WΓ.

Example 2.7.3. ConsiderWΓ the Coxeter group with defining graph Γ := •
a

•
b3
.

Then the Coxeter cell is drawn in Figure 2.7.1. Which is a convex hull of a
hexagon. The points of CΓ are the elements of the orbit xWΓ . Between two
points is an edge if and only if there is an element s ∈ V (Γ) of the generating
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set of WΓ such that these two points are mapped to each other by this element
s. The fundamental cone is drawn in red. The real fundamental domain (here a
quadrangle) is the intersection with this hexagon.

Remark 2.7.4. Consider CΓ the Coxeter cell of a finite Coxeter group of type
Γ.

(i) It is clear that the 1-skeleton on the Coxeter cell is the Cayleygraph of the
associated Coxeter group, because there is a bijection between the vertices
of CΓ and the orbit of a vertex in CΓ by the groupWΓ, which is in bijection
with the elements of WΓ (by Theorem 1.2.7).

(ii) One can verify that at least combinatorially the real fundamental domain
and the fundamental domain coincide. Moreover the barycentric subdivi-
sion of CΓ exists of fundamental domains glued together (see later Remark
2.11.5 and Example 2.11.6).

(iii) The term “Permutahedron” comes from the fact that the Coxeter cell of
the Coxeter group Symn is a Permutahedron in a classical sense (a real
polytope in dimension n− 1).

(iv) In Example 2.7.3, there were only points, edges and one plane. For higher-
dimensional cases (in case |V (Γ)| > 2), one will get more planes or arbitrary
n-cells. Such an n-cell corresponds uniquely to a coset of a special subgroup
of rank n. In Figure 2.7.1, the edge from 1 to a corresponds to the coset
W{a} and the edge from ab to aba to abW{a} and so forth. The whole plane
corresponds to W{a,b} (We will see this more generally in Theorem 2.7.5).

(v) The name “(real) fundamental domain” comes from the fact that the action
of WΓ on the 1-skeleton of CΓ (by left multiplication) induces an action
WΓ ↷ CΓ on the full Coxeter cell, for which the orbit of the fundamental
domain is the complete complex CΓ.

The following Theorem serves also as a basis for how we later will define the
Deligne complex. It also gives us a consisted way in defining the fundamental
domain, Davis complex and the Deligne complex.

Theorem 2.7.5 ([24, Lemma 7.3.3]). ForWΓ a finite Coxeter group and Face(CWΓ
)

the poset of faces of the Coxeter cell. The map WΓ → V (CWΓ
) : w 7→ xw induces

a poset isomorphism WΓSf →̃ Face(CWΓ
).

Remark 2.7.6 (Davis complex seen as an abstract simplicial complex). Suppose
WΓ a Coxeter group and let CWΓ

be the Davis complex. The poset of spherical
cosets WΓSf and the poset of faces of the Davis complex Face(CWΓ

) are by
Theorem 2.7.5 isomorphic, we thus will sometimes refer to the Davis complex as
WΓSf . We will refer to the fundamental domain as the poset Sf , later we will
define the Deligne complex as AΓSf .

One can verify that The geometric realization of Flag(WΓSf ) is isomorphic to
the barycentric subdivision of CWΓ

(see Definition 2.2.2 (iii)). As an example in
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Figure 4.2.3 is Geom
(
Flag(WΓSf )

)
shown for Γ := •

a
•
b3
.

2.8 Davis complex of an infinite Coxeter group

As in Remark 2.7.6 one can define the Davis complex for arbitrary Coxeter groups
just as WΓSf . Despite that, we will construct a way such that we can view this
as a complex (a complex that would coincide with Coxeter cell CΓ in the finite
case) one can use the following construction.

Construction 2.8.1. Let WΓ be an arbitrary Coxeter group. Let CΓ the fol-
lowing complex: start with the Cayleygraph Cay(WΓ). If WΛ is a spherical
subgroup; then Cay(WΛ) is a subgraph of Cay(WΓ), also the 1-skeleton of the
Coxeter cell (from definition 2.7.1) CΛ coincides with Cay(WΛ). Such that there
is natural way to attach the Coxeter cell CΛ to Cay(CΓ). If there is a spherical
subgroup WΠ ≤ WΛ ≤ WΓ; then is CΠ a face of CΛ such that if one attaches CΠ

to Cay(WΓ), this becomes a subcomplex of CΛ in CΓ. Similarly, one attaches CΛ

to every coset wWΛ inside Cay(WΓ).

Definition 2.8.2. Let WΓ be an arbitrary Coxeter group. The resulting cell
complex of Construction 2.8.1 is called the Davis complex (also called Coxeter
complex) of WΓ. Just as for the finite case we can define a real fundamental do-
main for the infinite case. By considering the union of the fundamental domains
of each CΛ ⊆ CΓ for each spherical subgroup WΛ ≤ WΓ (here not for the cosets
gWΛ with g ̸∈ WΛ).

Example 2.8.3. (i) We construct the Davis complex of type Γ := •
b

•
a

•
c3 2
.

We first construct its Cayleygraph. Then we look a the spherical cosets
of WΓ, on these subgraphs we will attach the associated Coxeter cells.
For example the spherical coset 1W{a,b} has an associated Coxeter cell
drawn in Figure 2.7.1. Doing the same to all the cosets of the form
gW∅, gW{a}, gW{b}, gW{c}, gW{a,b}, gW{b,c} for g ∈ WΓ we get the cell com-
plex in Figure 2.8.1.

In Figure 2.8.1, the red colored part is the fundamental domain, which is
in this case isomorphic with two quadrangles glued together at one side.
The orbit of the fundamental domain is the complete complex. There are
6 Coxeter cells that contain the vertex a, they correspond to the cosets
aW∅,W{a}, aW{b}, aW{c},W{a,b} and W{a,c} ∈ WΓSf .
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•1

• c
•a

•ac

•
b

•
ba

•
bab

•
ab

• cb

•
cba

•
cbab

•acb

•
bac

•
bc
•
bcb

•
bcba

•
bcbab

•
bcabab

•
abac

•abc

• 1

• c

•a

•ac

•
b

•
ba

•
bab

•
ab

Figure 2.8.1: Left: the Davis complex, right: Coxeter cells containing 1.

(ii) Let Γ := •
c

•
a

•
b2 , the Davis complex is drawn in Figure 2.8.2 it

is drawn in a hyperbolic projection. In this way we can represent the 0-
skeleton of this complex as the orbit of one vertex by the reflections of lines.
The two lines that intersect perpendicular correspond with a and b since
they commute. The generator c does not commute with anything, hence,
c correspond with the line that only intersect a and b at infinity.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.8.2: Hyperbolic projection of the Davis complex.

In Example 2.6.3 we already constructed the fundamental domain of Γ in
Figure 2.6.1. One can see this again as the intersection between the Davis
complex and the red region (that sometimes is also called the fundamental
domain). Also if we look at the barycentric subdivision, the fundamental
domain is a subcomplex of this barycentric subdivision (also see Figure
2.11.1).
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We will not prove the following theorem, however one should check this theorem
on an example to get some intuition in these complexes.

Theorem 2.8.4 ([24, Proposition 7.3.4.]). Let CΓ be the Coxeter complex con-
structed in Construction 2.8.1. Then it satisfies the following:

(i) The 1-skeleton of CΓ is the Cayleygraph of WΓ, and the 2-skeleton of CΓ is
the Cayley 2-complex;

(ii) The link of every vertex of CΓ is isomorphic to the nerve(Γ) of WΓ;

(iii) A subset of WΓ forms a cell in CΓ if and only if it corresponds with a
spherical coset;

(iv) The poset of cells of CΓ is isomorphic to the poset WΓSf .

Definition 2.8.5. LetWΓ a Coxeter group and CΓ its Davis complex, then there
is a natural faithful action by WΓ on CΓ by left multiplication. Take w ∈ WΓ the
action of the element sends the Coxeter cell corresponding the the coset gWΛ to
wgWΛ.

Remark 2.8.6. (i) For the finite case Definition 2.7.1 and Definition 2.8.2
coincides, precisely because WΓ is itself spherical.

(ii) When we say Coxeter polytope or Coxeter Cell instead of Coxeter complex/
Davis complex we explicit focus on the fact that it comes from a finite
Coxeter group.

(iii) Theorem 2.8.4 (ii) and (iii) tells us that every vertex is contained in exactly
one Coxeter cell for each spherical subgroup of WΓ.

(iv) If WΓ is a right-angled Coxeter group, then the Davis complex is clearly a
cube complex, since the Coxeter cells are all cubes.

Theorem 2.8.4 immediately implies the following, now also for infinite Coxeter
groups.

Corollary 2.8.7. The barycentric subdivision of the Davis complex is isomorphic
with Geom

(
Flag(WΓSf )

)
.

We can define a metric on the Davis complex. The obtained metric space will
turn out to be CAT(0).

Definition 2.8.8 (Moussong metric). Let CΓ be the Davis complex of a Coxeter
group Wg. The Moussong Metric on CΓ is the metric induced by the piecewise
euclidean metric in every Coxeter cell of CΓ.

Remark 2.8.9. The Moussong metric can also be constructed as follows. Con-
sider the real fundamental domain (which we will denote by KΓ) (Definition
2.7.2) with its induced metric in Rn (as a subspace). If Γ is not spherical we can
glue each real fundamental domain of spherical subgroups in a natural manner
(as in definition 2.8.2). Hence, we have metric on this space (this space is also
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called the Coxeter block of type Γ in [24, page 337]). We then extend this metric
to the whole Davis complex CΓ by the action of WΓ on CΓ, this is possible since
KWΓ

Γ tiles the whole Davis complex. Suppose now a right-angled case Γ. The
Coxeter cells (for Λ a complete subgraph of Γ) are always cubes (= [−1, 1]n with
n the rank of the Coxeter group WΛ), and the real fundamental domain of a
Coxeter cell is the intersection of this cube with a cone bounded by orthogo-
nal hyperplanes (hence a [0, 1]n cube). The Coxeter block is then cubes glued
together, and hence, a cube complex. More formally we do the following: The
fundamental domain KΓ is isomorphic to {C ∈ WΓSf | 1 ∈ C} by

Sf → {C ∈ WΓSf | 1 ∈ C} : T 7→ AT .

There is an induced metric on KΓ in Rn, we copy this metric to {C ∈ WΓSf |
1 ∈ C} and extend this metric to the whole Davis complex since CWΓ

= {C ∈
WΓSf | 1 ∈ C}AΓ (the action by left multiplication).

This alternative construction of the Moussong metric will be interesting to define
a metric on buildings of type Γ later in Chapter 4.

Theorem 2.8.10 ([39, Theorem 3.5]). For every Coxeter group WΓ is the Davis
complex CΓ a CAT(0) space for the Moussong metric (Definition 2.8.8). More-
over, the action of WΓ in the Davis complex is geometric5.

Proof. See [24, Chapter Twelve]. It was first proven by Moussong in his Master’s
thesis in 1988 who was a student of Michael Davis.

Theorem 2.8.11 ([18, Theorem 3.5]). ForWΓ a right-angled Coxeter group then
the Davis complex CΓ is a CAT(0) cube complex.

2.9 Salvetti complex

The next space we will discuss will be a metric space such that the fundamental
group is a predetermined Artin group. The Salvetti complex will be interesting
for the K(π, 1) conjecture. In addition, this complex will be of great use to find
quasi-isometries between right-angled Artin groups. The universal cover of this
space will be similar to the Deligne complex. We will first define the Salvetti
complex for right-angled Coxeter groups.

Definition 2.9.1. Consider Γ a simple graph and a family of pointed topological
spaces6 {(Xv, pv)}v∈V (Γ) with index set V (Γ). Then the Γ-graph product is a

topological space
∏̃

v∈V (Γ)(Xv, pv) defined as

∏̃
v∈V (Γ)

(Xv, pv) :=
⋃

∆ ⊆
clique

Γ

 ∏
v/∈V (∆)

{pv} ×
∏

v∈V (∆)

Xv

 ⊆ ∏
v∈V (Γ)

Xv.

5see Definition 6.2.1
6A pointed topological space (X, p) is a topological space X with a chosen basepoint p ∈ X.
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Definition 2.9.2 (Salvetti complex for RACG). The Salvetti complex SΓ of a
right-angled Coxeter group WΓ is the Γ-graph product constructed if for every
v ∈ V (Γ) we use (Xv, pv) := (S1, (0, 1)) in Definition 2.9.1 (where S1 is the unit
circle). We will write S1

v and •v = pv if we want to denote the unit circle and
basepoint associated for the index v ∈ V (Γ). Hence,

SΓ :=
∏̃

v∈V (Γ)
(S1

v , •v), where S1 = • .

Remark 2.9.3. Intuitively, one can see the Salvetti complex of WΓ as the com-
plex starting from a wedge of n := |V (Γ)| circles, if two vertices are connected
we attach a torus(∼= S1 × S1) to this. If a set of k vertices form a clique we
attach a k-torus(∼= ×

1≤i≤k
S1) to this complex. The resulting complex is then our

Salvetti complex.

Example 2.9.4. Consider the simple graph Γ := •
c

•
a

•
b2
. The Salvetti

complex SΓ is draw in Figure 2.9.1. The fundamental group of this space is
(Z× Z) ∗ Z, that is also the Artin group AΓ =

〈
a, b, c | ab = ba

〉
. This will also

true in general; see Theorem 2.9.17.

SΓ =

•

∼=

•

Figure 2.9.1: The Salvetti complex of Γ.

Remark 2.9.5. As seen in Figure 2.9.1 we will often visualize a torus as square
where we glue the two pair of opposite sides together, i.e. in Figure 2.9.1 we first
glue the two red lines together then we get a cylinder, having this we glue the
two opposite blue lines together and get a torus. See also Figure 2.9.2.

⇝ ⇝

Figure 2.9.2: Visualization of a torus
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For general non-right-angled Artin groups one cannot define the Salvetti complex
using Definition 2.9.1, for this we need to construct it out of the Davis complex
of WΓ .

Definition 2.9.6 (Orientation of a Coxeter cell). Let WΓ be a finite Coxeter
group and let CΓ be the Coxeter cell from Definition 2.7.1. Suppose w,w′ ∈
V (CΓ) are arbitrary vertices of CΓ which are connected by an edge. An orienta-
tion of this edge points either from w to w′ or from w′ to w. For every vertex
v ∈ V (CΓ) there is a unique

7 vertex v′ directly opposite to v such that the vector
v⃗ from v to v′ passes through the center of CΓ. The oriented Coxeter cell C̃Γ of
CΓ (depending on v) is the structure resulting when we give every edge in the
1-skeleton of CΓ the orientation such that the inner product with v⃗ is positive
(we also say that C̃Γ is the oriented Coxeter cell with basepoint v).

Remark 2.9.7. (i) If the Coxeter polytope CΓ has n vertices; then it also has
n possible orientations.

(ii) Note that such an orientation of an edge is always well-defined; it cannot
be the case that an edge is “perpendicular” to the vector v⃗. Suppose this
is the case for the edge (corresponding to a generator s ∈ V (Γ)) between
w and w′ in the Coxeter cell CΓ, then there is a path p ⊆ WΓ (respectively
p′ ⊆ WΓ) from v to w (respectively w′) such that the length of both paths
are equal. But because w and w′ are connected, we have w−1w′ = s ∈ V (Γ)
such that p−1p′ = s. Therefore, p−1p′s = 1, which is a contradiction by
Lemma 1.1.7.

Example 2.9.8. Consider the Coxeter group of type Γ := •
a

•
b3
. The Coxeter

cell (Figure 2.7.1) has 6 possible orientations, one for each vertex. Figure 2.9.3
shows one possible orientation.

•1•ba

•aba • a

•
b

•
ab

Figure 2.9.3: The oriented Coxeter cell with base point a.

Before we can define the Salvetti complex in general, we need the notion of the

7This is by picking a word g of maximal length in WΓ (this exists since this group is finite).
Then one can check that v′ := wv satisfies this condition (use Lemma 1.1.7).
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Full Salvetti complex (In the paper by McCammond [39] it is just called the
“Salvetti complex”).

Construction 2.9.9. Let WΓ an arbitrary Coxeter group and CΓ its Davis
complex. Consider a Coxeter cell C ′ which is a subcomplex of CΓ (i.e. C ′ ∼= CΛ

for Λ ∈ SfΓ) suppose this subcomplex has n possible orientations (as in Definition
2.9.6) call these C ′

1, C
′
2, . . . , C

′
n, then we replace C ′ with the n oriented Coxeter

cells. Two oriented Coxeter cells C ′
l and C

′
k are connected by a smaller oriented

Coxeter cell C ′′ ⊆ C ′
l , C

′
k if and only if the orientation of C ′′ is compatible with

that of C ′
L and C ′

k.

Definition 2.9.10 (Full Salvetti complex). Let WΓ an arbitrary Coxeter group,
the resulting space from Construction 2.9.9 by replacing each Coxeter cell by
as many oriented Coxeter cells as the number of vertices in this cell, is the full
Salvetti complex. We denote this by FSΓ.

Remark 2.9.11. Let WΓ a Coxeter group and FSΓ the full Salvetti complex.
By construction of FSΓ there is a bijection between the points of FSΓ and the
points of CΓ and thus also with the elements of WΓ (see Remark 2.7.4 (i)).

To construct the Salvetti complex out of the full Salvetti complex, we will need
to quotient out the action of WΓ. Consider the following action.

Definition 2.9.12. Similar as in Definition 2.8.5 one can define an action of WΓ

on FSΓ. We first define this action on the 0-skeleton by left multiplication. Let
C̃ be an oriented Coxeter cell in FSΓ with base point v ∈ WΓ, then C̃w (with
w ∈ WΓ) is the unique oriented Coxeter cell C̃ ′ with base point wv and which
corresponds to the same unique spherical subgroup (see Remark 2.8.6(iii)), but
now a different coset namely gWΛ 7→ wgWΛ.

Definition 2.9.13 (Salvetti complex for arbitrary Coxeter groups). Let WΓ be
an arbitrary Coxeter group let FSΓ be the full Salvetti complex, the Salvetti com-
plex of WΓ is the quotient complex FSΓ/WΓ (by the action defined in Definition
2.9.12).

We will say that SΓ is the Salvetti complex associated to WΓ or to AΓ. The
Salvetti complex only depends on the defining graph Γ.

Example 2.9.14. (i) We first give an example in the finite case. Let Γ := •
a

•
b2
,

in the finite case the Coxeter complex only consists of one Coxeter cell CΓ.
The Full Salvetti complex has as many copies of this Coxeter cell as it has
orientations. These oriented Coxeter cells are almost everywhere disjoint
and only connect when they have an edge that has the same orientation.
See Figure 2.9.4 for the construction of the full Salvetti complex of Γ. The
full Salvetti complex FSΓ consists of 4 squares, where each pair has either
two mutual edges (that have the same orientation) or non.
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•

••

•

+

•

••

•

+

•

••

•

+

•

••

•

= FSΓ =

• •

••

FSΓ/WΓ = SΓ =

•

∼=
•

Figure 2.9.4: The full Salvetti complex FSΓ and Salvetti complex SΓ of Γ.

The Salvetti complex of Γ is then the quotient space (by the action of
WΓ = Z/2Z×Z/2Z), we are then left with one square wherein we identify
opposite edges. Hence, we have a torus, which has fundamental group
Z× Z.

(ii) For an infinite case consider Γ := •
b

•
a

•
c3 2
. The full Salvetti com-

plex and the Salvetti complex is drawn in Figure 2.9.5.

•

•

•

•

•

••

•

•

••

•

•

• •

•

••

•

•

•

Figure 2.9.5: Left: the full Salvetti complex for Γ; right: the Salvetti complex.
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The full Slaveti complex is the Davis complex (constructed in Example
2.8.3 (ii)) where we replace every Coxeter cell by oriented Coxeter cells.
Different oriented Coxeter cells are glued together on sub-oriented Coxeter
cells if these subcells have the same orientation. In Figure 2.9.5, is the
Salvetti complex drawn. The blue loops and red loops span a torus (See
Remark 2.9.5). In the hexagon spanned by the blue loop and green loop,
we identify all the green edges (along their orientation), and the same for
the blue edges.

Later we will see the Salvetti complex of right-angled Artin groups as cube
complexes (See Definition 5.2.6), hence it is natural to call the end points of
these edges vertices (and not “points”).

Definition 2.9.15. The Salvetti complex contains only contains one “vertex”
(as seen in Figure 2.9.5 and 2.9.4), which is the point corresponding to the orbit
of an arbitrary vertex •WΓ or for the right-angled case the vertex corresponding
to
∏

v∈V (Γ){•v} in Definition 2.9.2. We will call •WΓ =: • also the basepoint of
the Salvetti complex.

Lemma 2.9.16. The two constructions Definition 2.9.2 and Definition 2.9.13
coincide for right-angled Artin groups.

Proof. Exercise.

Hence, the long awaited theorem.

Theorem 2.9.17 ([39, page 18]). For a right-angled Artin group AΓ and SΓ the
Salvetti complex associated to Γ, the fundamental group π1(SΓ) is isomorphic to
AΓ.

Sketch of proof. We can find the isomorphism explicitly by mapping the genera-
tors of π1(SΓ) (i.e. the edges containing the base point (one of course first needs
to prove that every path is homotopic to a sequence of edges containing the base
point)) to the generators of AΓ (choosing the one that corresponds to the gen-
erator in Γ that corresponds to this edge in the Davis complex). The rest is an
exercise.

Remark 2.9.18. (i) The Davis complex is simply connected, however the full
Salvetti complex is never simply connected. For example if one starts in
any vertex and picks an arbitrary edge that contains this vertex. If we
consider the path starting at this point going over this edge and then going
back via the inverse oriented edge, we get a path that is not homotopic
to the trivial path. In Theorem 2.12.1 we will show that the fundamental
group of this space is isomorphic to the kernel of the natural morphism
AΓ ↠ WΓ.

(ii) There is a distinction between the Salvetti complex of AΓ and the presen-
tation complex of AΓ. For a finitely generated group G the presentation
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complex is the 2-dimensional cell complex constructed as follows: Let S
the generating set of G, with n = |S|. One start with a wedge of n circles
connected at one point, for every word in the presentation we add a 2-cell
and attach this word to the boundary of this 2-cell. For a RAAG the 2-
skeleton of the Salvetti complex coincides with the presentation complex
(see [9, Section 1.1]). However, the Salvetti complex could also contain
higher dimensional cells. For example, let Γ be complete graph on three
vertices (i.e. a triangle) then the Salvetti complex is a 3-dimensional cube
where we identify parallel edges with each other and parallel faces. This
complex will be a non-positively curved cube complex (See later proof (2)
of Theorem 3.3.10). The presentation complex of AΓ is the second cube
complex drawn in Figure 2.3.2, where we identify parallel edge to parallel
edges. Besides, this presentation complex is not a positively curved space.

2.10 Deligne complex

Some highlights of the correlation between the Coxeter groups and Artin groups
are shown by Pierre Deligne (The first Belgian who obtained a Fields medal) in
[25]. In this section, we will introduce the Deligne complex. A complex with
similar properties as Davis complex for a Coxeter group, but now for an Artin
group.

Remark 2.10.1. The Davis complex CΓ was constructed from attaching Coxeter
cells to the Cayleygraph, from which we obtained the interesting fact that the
poset of faces was isomorphic to the poset of spherical cosetsWΓSf . The Deligne
complex will be defined in the reverse order.

Definition 2.10.2. Consider AΓ an Artin group of type Γ and let AΓSf be the
poset of spherical cosets of AΓ. The Deligne complex is the simplicial complex
Flag(AΓSf ).

Construction 2.10.3. Let Γ := •
a

•
b2
be a right-angled defining graph. Con-

sider the following complex DΓ; The points of DΓ are the elements of Artin
group (i.e. the rank 0 cosets in AΓSf ). The lines of DΓ are the sets of all ver-
tices contained in a rank 1 coset. In contrast the Davis complex for which the
rank 1 cosets only contained two elements (for example gWa = {g, ga}). The
rank 1 cosets of Artin groups contains infinitely many elements (for example
gAa = {g, ga, ga−1, ga2, ga−2, . . . }). The “planes” are the sets of all vertices con-
tained in a rank 2 cosets and so on. Here, the “faces” of DΓ corresponds to the
cosets of AΓ. We will also call DΓ the Deligne complex of type Γ. Figure 2.10.1

shows the construction of the Deligne complex DΓ of type Γ := •
a

•
b2
.
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• 1

• a

•a
−1

• b

• a
2

•a
−2

• b
2

• ab

•a
−1b−1

• a
−1b

• ab
−1

• a
2b

• a
−2b

• ab
2

•b
−1

•b
−2

• a
2b2

•a
−2b−2

•a
−2b2

•a
2b−2

•a
2b−1

•a
−1b−2

• ab
−2

•a
−1b2

•a
2b−2

• a
−2b

A{b} =

aA{b} =

a−1A{b} =

a2A{b} =

a−2A{b} =

∥
A{a}

∥
bA{a}

∥
b2A{a}

∥
b−1A{a}

∥
b−2A{a}

Figure 2.10.1: Deligne complex of Γ.

This space also coincides with the universal cover of the Salvetti complex of type

Γ := •
a

•
b2
.

Remark 2.10.4. (i) One should look at Theorem 2.8.4 and Construction
2.10.3 and see the similarities.

(ii) In the Deligne complex DΓ of type Γ := •
a

•
b2
, the coset A{a,b} clearly

corresponds with a real plane. However in general, cosets of rank n of
Artin groups that are not right-angled do not have a structure of Rn+1.

For example consider DΓ of type Γ := •
a

•
b3
, then the whole group is a

spherical coset of rank 2. However, this coset will not span R2.

2.11 Modified Deligne complex and Davis com-

plex

In this section we will give an alternative construction of the Davis complex and
Deligne complex. For more information of this construction see [21, Section 1].

Construction 2.11.1. Let WΓ be a Coxeter group with rank n := |V (Γ)|. Let
∆n be a standard n-simplex (Definition 2.1.4) spanned by the elements of V (Γ).
Consider the following complex

ĈΓ := WΓ ×∆n/ ∼,
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where ∼ is an equivalence relation (w1, x) ∼ (w2, y) iff x = y and if there is a
subsimplex δT ⊆ ∆n (T ⊆ V (Γ)) containing x in its interior such that w−1

1 w2 ∈
WT . Similarly on construct the complex

D̂Γ := AΓ ×∆n/ ∼,

where ∼ is an equivalence relation (a1, x) ∼ (a2, y) iff x = y and if there is a
subsimplex δT ⊆ ∆n (T ⊆ V (Γ)) containing x in its interior such that a−1

1 a2 ∈
AT .

These complexes are also called the Davis complex and Deligne complex respec-
tively in [21]. However, these complexes will not be the same as constructed in
Section 2.7, it will be the dual of these complexes.

Example 2.11.2. Let Γ :=
• •

•
, the Davis complex constructed as in

Section 2.7 is a cube. The Davis complex constructed in Construction 2.11.1 is
the dual of a cube.

CΓ = ∆n = ĈΓ =

The complex ĈΓ is formed by attaching |WΓ| many n-simplices in such a way it
satisfies “∼”.

Remark 2.11.3. In literature one regularly calls the complexes ĈΓ and D̂Γ dis-
cussed in Construction 2.11.1 the Davis and Deligne complex and the geometric
realization of Flag(WΓSf ) and Flag(AΓSf ) are called the modified Davis and
modified Deligne complex respectively.

Construction 2.11.4 ([20, page 8],[19]). We can give a natural cubical struc-
ture on the Deligne complex Flag(AΓSf ). where we only connect vertices gAT
and gAT̃ if |T |+ 1 = |T̃ |. The cubes are then of the form

[gAT1 , gAT2 ] := {gAT̃ ∈ AΓSf | T1 ⊆ T̃ ⊆ T2},

this would be a
∣∣[gAT1 , gAT2 ]∣∣-dimensional cube. Completely similar we can give

a natural cubical structure on the Davis complex Flag(WΓSf ). Where we only
connected vertices gWT and gWT̃ if |T | + 1 = |T̃ |. This has been done as an

example in Figure 4.3.1 for Γ := •
a

•
b2
. The cubes are then of the form

[gWT1 , gWT2 ] := {gWT̃ ∈ WΓSf | T1 ⊆ T̃ ⊆ T2},

this would be a
∣∣[gWT1 , gWT2 ]

∣∣-dimensional cube.
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Remark 2.11.5. As already noticed in Example 2.8.3 we can find the funda-
mental domain as a part of the Davis complex CΓ (the Davis complex in context
of Definition 2.8.2). It is also clear that for the action of WΓ on CΓ the orbit of
the fundamental domain is the whole Davis complex. The same will actually be
true for the Deligne complex AΓSf but now with the action of AΓ (again by left
multiplication). The following example will make this more clear.

Example 2.11.6. In Figure 2.11.1 a portion of the Davis complex of type Γ :=

•
c

•
a

•
b2

is drawn (as in Construction 2.11.4). In red the fundamental
domain is indicated (also see Example 2.6.3 and Figure 2.6.1).

•
W∅

•
W{a}

•
W{b}

•
W{a,b}

•
W{c}

•
cW∅

•
cW{a}

•
cW{b}

•
cW{a,b}

•
caW∅

•
caWb

•
caWc

•
cbWa •

cbW∅

•
cbW{c}

•
cabW∅

•
cabW{c}

•
aW∅

•
aW{b}

•
aW{c}

•
bW∅

•
bW{c}

•
bWa

Figure 2.11.1: Cubical structure of Davis complex CΓ.

The orbit (by left multiplication) of K by the action of WΓ is the whole Davis
complex. To construct the geometric realization of Geom

(
flag(WΓSf )

)
or equiv-

alent the barycentric subdivision of CΓ (of the complex draw in Figure 2.8.2).
We need to draw edges between the 0 cosets and 2 cosets that are included in
each other (for example between W∅ and W{a,b}) in Figure 2.11.1.

Definition 2.11.7 (Moussong metric for the Deligne complex). We define a
metric on the Deligne complex completely analogous to how we did for the Davis
complex in Remark 2.8.9. The fundamental domain KΓ is isomorphic to {C ∈
AΓS

f | 1 ∈ C} by

Sf → {C ∈ AΓSf | 1 ∈ C} : T 7→ AT .

There is an induced metric on KΓ in Rn, we copy this metric to {C ∈ AΓS
f |

1 ∈ C} and extend this metric to the whole Deligne complex since DΓ = {C ∈
AΓS

f | 1 ∈ C}AΓ (the action by left multiplication).

To end this section we refer to [40, Theorem 3.1], to see a concrete application
of the Deligne complex. Herein they prove that for FC-type Artin groups the
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intersection of parabolic subgroups8 is again a parabolic subgroup they use the
Deligne complex extensively, while it is a priori not clear why it is needed.

2.12 Some connection between complexes and

fundamental groups

In this section we will use the complexes we have discussed throughout this
chapter to construct fundamental groups and quotient groups that are isomorphic
to the Coxeter or Artin group.

Theorem 2.12.1. Let WΓ be a Coxeter group and AΓ be the associated Artin
group, let B be the wedge of |V (Γ)| circles. We have the following isomorphic
groups:

(i) WΓ
∼= π1(B)/π1

(
FS(1)

Γ

)
∼= π1(SΓ)/π1(FSΓ);

(ii) AΓ
∼= π1(B)/π1

(
Cay(AΓ)

) ∼= π1(SΓ) ∼= π1(FSΓ/WΓ).

Here FS(1)
Γ and Cay(AΓ) are covering spaces of B, and FSΓ of SΓ. Hence, we

identify these groups by the image of the natural injections π1(cay(AΓ)), π1

(
FS(1)

Γ

)
↪→

π1(B) and π1(FSΓ) ↪→ π1(SΓ) that are induced by these covering maps.

Before we can prove this we refer to the following construction:

Theorem 2.12.2 ([48, Section 2.2.2]). Let π1(B) be a fundamental group of a
bouquet of circles B. If G is a subgroup of π1(B); then G is isomorphic to a
fundamental group π1(Γ) of a graph Γ such that the graph Γ covers B. Moreover,
there is an explicit construction of Γ being

V (Γ) := {fG | f ∈ π1(B)};
E(Γ) := {e | e = (fG, sfG) for s ∈ E(B), fG ∈ V (Γ)}.

In Theorem 2.12.2 an edge was a couple (·, ·) rather than a set {·, ·}. Even
though we do not care about the orientation of edges in the fundamental group
of a graph, doing this with couples is important since it allows for two edges
between the same pair of two vertices (since, (a, b) ̸= (b, a)).

Proof of Theorem 2.12.1. (i) part 1: SinceWΓ is a group with |V (Γ)| generators
and π1(B) is the free group of rank |V (Γ)|, there is an epimorphism

ϕWΓ
: π1(B)↠ WΓ.

Let ker(ϕWΓ
) be the kernel of this morphism. The 1-skeleton of the Davis complex

is the Cayleygraph of WΓ (by Theorem 2.8.4 (i)). We made FSΓ by attaching
to every spherical Coxeter cell oriented cells (as many as there were possible

8i.e. a conjugate of a special subgroup
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orientations). Since an edge has only two orientations, the graph FS(1)
Γ is the

Cayleygraph of WΓ where we replace every edge by two edges. However, this is
exactly the graph you would become by Theorem 2.12.2.

V (Γ) :={fker(ϕWΓ
) | f ∈ π1(B)} = WΓ;

E(Γ) :=
{
e | e =

(
fker(ϕWΓ

), sfker(ϕWΓ
)
)
for s ∈ E(B), fker(ϕWΓ

) ∈ V (Γ)
}

=
{
(w, sw), (sw, ssw) | s ∈ V (Γ), w ∈ WΓ

}
=
{
(w, sw), (sw,w) | s ∈ V (Γ), w ∈ WΓ

}
.

(i) part 2: Since AΓ
∼= π1(SΓ) has the same generator set {si | i ∈ V (Γ)} as WΓ

with just fewer relations, there is an epimorphism

ψ : π1(SΓ)↠ WΓ :

si 7→ si

s2i 7→ 1.

Clearly FSΓ is a cover of the Salvetti complex, since by definition of the Salvetti
complex we have

χ : FSΓ ↠ FSΓ/WΓ =: Sg.
We choose a basepoint x0 ∈ FSΓ ∩ χ−1(•) (with • the base point of the Salvetti
complex see also Definition 2.9.15 (i)). The χ map induces a monomorphism.

χ∗ : π1(FSΓ, x0) ↪→ π1(Sg, •).

We will now prove that im(χ∗) = ker(ψ).
“⊆”: Suppose we have a closed path p in FSΓ. This path is contained in a
sequence of (maximal9) oriented Coxeter cell (C ′

1, C
′
2, . . . , C

′
k) (we denote Ci for

the not oriented Coxeter cell in the Davis complex). The closed path p starts in
a cell C ′

1 and ends in C ′
k. Since a Coxeter cell is just a convex polytope, we can

continuously deform p to a sequence of edges in C ′
i, see Figure 2.12.1 as example.

••

•

••

• becomes

••

•

••

• or

••

•

••

•

Figure 2.12.1: Continuous deformation of p.

Since oriented Coxeter cells are attached to each other along there faces, the
staring and ending vertices of p̃ can be chosen arbitrary in the face where p

9i.e. there does not exist a Coxeter cell C∆ in the Davis complex CΓ and an index i such
that Ci is a real subcomplex of C∆
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started and ended (as long as we stay consisted in the choice in the next Coxeter
cell). Hence, without loss of generality our path is a sequence of oriented edges
in oriented Coxeter cells p = (e1, e2, . . . , em). Every edge is a lift of an edge in
si ∈ π1(S) ≡ AΓ =

〈
si ∈ V (Γ)

〉
. Suppose this path p has a minimal amount of

edges such that χ∗(p) /∈ ker(ψ). The full Salvetti complex is the Davis complex
where we replace the Coxeter cells with oriented ones. Hence, there is a natural
projection map

π : FSΓ ↠ CΓ,

such that π(C ′
i) = Ci. One needs to be careful it could be that Ci = Ci+1 while

C ′
i ̸= C ′

i+1 (this would happen if they correspond to the same Coxeter cell but
a different orientation). Let C1, C2, . . . , Cl := π(C ′

1, C
′
2, . . . , C

′
k) the sequence of

Coxeter cells in the Davis complex that contains π(p) and such that Ci ̸= Ci+1.

Since the Davis complex is simply connected (Remark 2.9.18 (iii)) If we would
project this path p = (e1, e2, . . . , em) on the Davis complex, there would be a
furthest Coxeter Ci0 cell from where our path goes back in the direction of the
base point, i.e. Ci0−1 = Ci0+1 . Hence, our situation is the following picture (if
it would be the case that the Coxeter cells are of dimension 2).

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

what we want:
•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

Figure 2.12.2: Furthest Coxeter cell.

Suppose Ci0 is the furthest Coxeter cell in where p is contained. Suppose CΛ

with that Λ ⊆ Γ and WΓ spherical is the smallest Coxeter cell in CΓ in which
Ci0 ∩ p is contained. We have w.l.o.g. p = (e1, e2, . . . , ei, ei+1, . . . ei+l, . . . , em)
where ei, ei+1, . . . , ei+l ∈ CΛ.

ϕ
(
χ∗(p)

)
= ϕ

(
χ(e1, e2, . . . em)

)
= ψ(sϵ11 s

ϵ2
2 · · · s

ϵi
i . . . s

ϵi+k

i+l · · · s
ϵm
m ) where ϵi ∈ {−1,+1}

= s1s2 · · · si · · · si+l · · · sm
= s1s2 · · · (si · · · si+l)−1 · · · sm
= s1s2 · · · (s′i · · · s′i+h) · · · sm
= ψ(χ∗(p′)),

where (si · · · si+l)−1s′i · · · s′i+h = 1 inWλ. Since the path which would correspond
to s′i · · · s′i+h in the Coxeter cell CΛ would be in one of its faces (in Figure 2.12.2 it
contains only one blue edge since there our Coxeter cell only contained one edge),
it is strictly smaller in length then si · · · si+l, hence h < l. Hence, we proved that
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the image of p is the same as the image of this path shortened by replacing the
path in the furthest Coxeter cell. Since p was minimal, then χ∗(p′) ∈ im(χ∗)
implies (χ∗(p′) ∈ ker(ψ) and hence,(χ∗(p) ∈ ker(ψ) which is a contradiction.
“⊇”: Suppose we have a path p in π1(SΓ) such that ψ(p) = 1 ∈ WΓ. Hence,
p = (sϵ11 , e

ϵ2
2 , . . . , e

ϵm
m ) such that

ψ(p) = ψ(sϵ11 , e
ϵ2
2 , . . . , e

ϵm
m )

= s1s2 · · · sm = 1 in WΓ.

This means that if we track down the path in the Davis complex / Cayleygraph
of WΓ. This path starts at 1 and ends at 1, since the whole element s1s2 · · · sm
is 1. This closed path we copy it to FSf where we rescue the orientation by
ϵ the obtained path we call p̄. It clearly follows that the image under χ of
the path p̄ is p. Hence, we conclude WΓ

∼= π1(SΓ)/ker(ψ) = π1(SΓ)/im(χ∗) =
π1(SΓ)/π1(FSΓ).
(ii): By Theorem 2.9.17 we already know that AΓ

∼= π1(SΓ) ∼= π1(FSΓ/WΓ).
We prove that AΓ

∼= π1(B)/π1
(
Cay(AΓ)

)
. We go analog like previous parts, we

prove that the kernel of the following morphism is π1
(
Cay(AΓ)

)
ϕAΓ

: π1(B)↠ AΓ.

The kernel is by Theorem 2.12.2 the fundamental group of the graph

V (Γ) :=
{
fker(ψAΓ

) | f ∈ π1(B)
}
= AΓ;

E(Γ) :=
{
e | e = {fker(ϕAΓ

), sfker(ψAΓ
)} for s ∈ E(B), fker(ψAΓ

) ∈ V (Γ)
}

=
{
{a, sa} | s ∈ V (Γ), a ∈ AΓ

}
.

This graph is exactly the Cayleygraph.

Definition 2.12.3 ([42]). Consider the natural epimorphism (that maps gener-
ators to generators) ϕ : AΓ ↠ WΓ. The kernel of this morphism is the colored
Artin group, which is hence also the fundamental group π1(FSΓ).
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3
The K(π, 1) conjecture

In this section we will explain the K(π, 1) conjecture. We will not go into detail,
and won’t do much more than state this conjecture. Instead, we will convince
you from the fact that our complexes discussed in Chapter 2 will be useful, and
will give us some equivalent statements of the K(π, 1) conjecture.

3.1 Definitions

Definition 3.1.1. Let G be a group and X a topological space such that for
certain k ∈ N we have homotopy groups πk(X) ∼= G and πn(X) = {1} for all
n ∈ N \ {k}. Then we call X a K(G, k) space. In the case that k = 1 we call X
an Eilenberg-MacLane Space.

Definition 3.1.2. A topological space X is aspherical if every homotopy group
πk(X) is trivial for k ≥ 2.

Lemma 3.1.3 ([2, Chapter 11]). Suppose X a topological space and G a group.
Then the following are equivalent:

(i) X is an K(G, 1) space;

(ii) X is aspherical and π1(X) = G;

(iii) the universal cover of X is contactable and π1(X) = G.

Theorem 3.1.4 (Cartan-Hadamard Theorem [14, Theorem I.6]). Let (X, d) be
a complete connected locally CAT(0) metric space, then there is a unique metric
d̃ on the universal cover X̄ of X such that the following holds:

(i) the covering map X̄ → X is a local isometry;

(ii) (X̄, d̃) is a CAT(0) space.

The metric d̃ coincides with the metric induced10 by d on X̄.

10This metric is precisely the piecewise metric you get from lifting paths from X to X̄, see
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3.2 A K(π, 1) space in the finite case

Construction 3.2.1. Suppose WΓ is a finite Coxeter group of type Γ with
n := |V (Γ)|. By Definition 1.2.4, there is an action of WΓ on Rn. For every
s ∈ V (Γ) there is a unique fix hyperplane Hs ⊆ Rn (the fix hyperplane of the
map rs, see Definition 1.2.4). Denote CHs for the subspace Hs ⊗R iHs. Using
Rn ⊂ Rn⊗R C ∼= Cn, one can define a natural action of WΓ on Cn. Consider the
space

ZΓ := Cn \
⋃
s

CHs.

Then clearly WΓ acts freely on this space.

From now one we denote HΓ := ∪sCHs to be the set of fix hyperplanes.

Example 3.2.2. Consider WΓ, the Coxeter group of type11 An−1. This means

WΓ =

〈
s1, s2, . . . , sn−1 | s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi︸ ︷︷ ︸

∀i,j,|i−j|>2

〉
∼= Symn.

Using Construction 3.2.1 we want to determine the pace ZΓ/WΓ. Because Symn

is generated by transpositions (i, j) ∈ Symn, we identify these transpositions with
reflections in Cn sending (z1, z2, . . . , zi, . . . , zj, . . . , zn) to (z1, z2, . . . , zj, . . . , zi, . . . , zn)
(one transposition for every pair (i, j) with 1 ≤ i < j ≤ n). Vectors in Cn for
which two coordinate values are equal (say zi = zj) are hence not contained
inside ZΓ. This is the case because they are contained in a fix hyperplane cor-
responding to the reflection (i, j) ∈ Symn (this is the reflection that sends the
two coordinates to each other). Thus, Z/WΓ is just the space of subsets of size
n of C (i.e. ZΓ/WΓ =

{
{z1, z2, . . . , zn} | zi ̸= zj ∈ C

}
). The fundamental group

of ZΓ/WΓ can be seen as follows: a closed path in ZΓ/WΓ is a set of n closed
paths (or “strands”) in C, one for every coordinate, with the condition that they
never intersect (two coordinates are never the same) at the end we go back at our
starting element. In Figure 3.2.1 is a possible closed path drawn, that consists
of n disjoint closed paths (you start at the top and as you walk along the path
in HΓ/WΓ at every time there are n new different elements of C). The resulting
fundamental group is the n-strand braid group that has presentation:

π1(ZΓ/WΓ) =

〈
s1, s2, . . . , sn−1 | sisi+1si = si+1sisi+1, sisj = sjsi︸ ︷︷ ︸

∀i,j, |i−j|>2

〉
∼= AΓ. (3.1)

So by this construction we get back our Artin group.

[12, Definition 3.24].
11Here we use the well-know naming of the finite Coxeter groups which can be found in a

lot of literature, or on Wikipedia.
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•
•

••
C

Figure 3.2.1: A path in the fundamental group of ZΓ/WΓ.

In Example 3.2.2 we see that equation (3.1) can be uses to construct a space
such that π1(ZΓ/WΓ) = AΓ when Γ is of type An−1. One can do this in general
for finite type Artin groups.

Theorem 3.2.3 ([21, page 1]). Suppose WΓ a finite Coxeter group and let ZΓ

be the space constructed in Construction 3.2.1. The space ZΓ/WΓ is a K(AΓ, 1)
space.

Proof. First Brieskorn proved that the fundamental group of ZΓ/WΓ is AΓ in
[13]. Deligne proved the stronger result in [25, (4.4)Théoréme].

3.3 A K(π, 1) space in the infinite case

For the infinite case we need to restrict Construction 3.2.1 to a cone in Rn. One
of the reasons our previous construction does not work anymore is that there
could be points in Rn that have an infinite stabilizer from the action of WΓ (by
its Tits representation).

Definition 3.3.1 ([21, page 598]). Let cone(Γ) be the simplicial cone in Rn from
Definition 1.2.10. The Tits cone Tits(Γ) is the following space

Tits(Γ) :=
⋃

w∈WΓ

cone(Γ)w.

In the finite case we have Tits(Γ) = Rn. It happens to be the case that

int
(
Tits(Γ)

)
∩ cone(Γ) = {x ∈ cone(Γ) | Wx is finite}.

Definition 3.3.2 (complex Tits cone [39, Section 4]). LetWΓ be a Coxeter group
let H the set of fix hyperplanes (of the linear maps ri in Definition 1.2.4). Con-
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sider Rn ⊂ Rn⊗RC ∼= Cn, the complexified Tits cone is CTits(Γ) := C⊗RTits(Γ).
Clearly WΓ acts freely on int

(
CTits(Γ)

)
\ H =: ZΓ

Theorem 3.3.3 ([39, Theorem 4.7]). The interior of the complexified Tits cone
with fix hyperplanes removed C int

(
Tits(Γ)

)
\H is equivariantly homotopy equiv-

alent to the full Salvetti complex FSΓ, for the action of WΓ.

We have the following summary.

Remark 3.3.4 ([39, page 18]). For a general Coxeter group WΓ, with CΓ its
Davis complex and FSg the full Salvetti complex, we have

(i) int
(
Tits(Γ)

) ∼= CΓ;

(ii) Cint
(
Tits(Γ)

)
\ H ∼= FSΓ.

The following conjecture can be found in [17, Conjecture 1]

Conjecture 3.3.5 (The K(π, 1) conjecture). The K(π, 1) conjecture states that
one of the following equivalent assertions is true for any Coxeter group WΓ:

(i) the space
(
C int

(
Tits(Γ)

)
\ H
)
/WΓ is a K(A, 1)-space;

(ii) the space FSΓ is a classifying space for AΓ;

(iii) the universal cover of FSΓ (or equivalent of SΓ) is contactable;

(iv) the universal cover of int
(
CTits(Γ)

)
\ H (or equivalent of(

int
(
CTits(Γ)

)
\ H
)
/WΓ) is contractible.

(v) [21, page 3 or 599] the Deligne complex Geom
(
Flag(AΓSf )

)
being con-

tractible (for the Moussong metric Definition 2.11.7).

Part of the K(π, 1) conjecture is already proven by van der Lek.

Theorem 3.3.6. For any Coxeter group WΓ (also the infinite once) with asso-
ciated Artin group AΓ, the fundamental group of ZΓ/WΓ is isomorphic to AΓ.

Proof. See [49].

We will now discuss some classes of (infinite) Artin groups where the K(π, 1)-
conjecture already proved

Definition 3.3.7 ([38, Definition 2.3]). An Artin group AΓ is two-dimensional
if for every triangle ∆ ⊆ Γ in the defining graph, the group A∆ is infinite.

The following theorem was proven by Charney and Davis.

Theorem 3.3.8 ([28, Theorem 2.7], [21, Theorem B]). The K(π, 1) conjecture
holds for every two dimensional Artin group.

Another class of Artin groups for which the K(π, 1) conjecture is solved is the
following.
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Theorem 3.3.9 ([21, Theorem A]). Let AΓ be an Artin group of FC-type, then
the K(π, 1) conjecture holds.

Skech of proof. [20, page 6 & 8]: In Construction 2.11.4 we gave a cubical struc-
ture to the Deligne complex. We can then prove that in the FC-types Gro-
mov’s Link Considtion (Theorem 2.3.10) is satisfied. Then by Theorem 2.3.7,
the Deligne complex is contractible and by the equivalences in Conjecture 3.3.5
we are done.

Since every right-angled Artin group is of FC-type, the K(π, 1) conjecture holds
for right-angled Artin groups. However, there is another way one can see that
the K(π, 1) conjecture holds for these groups.

Theorem 3.3.10. Let AΓ be a right-angled Artin group, then the K(π, 1) con-
jecture holds.

Sketches of proofs. We give multiple proofs:
(1): Follows directly from Theorem 3.3.9.
(2): Let AΓ be a right-angled Artin group. The Salvetti complex is in this case
a cube complex (see later 5.2.6). Then by Theorem 2.3.9 is SΓ a locally CAT(0)
space. By Theorem 3.1.4 the universal cover S̄Γ is CAT(0). Finely by Theorem
2.3.7 the universal cover is contractible, which is what we wanted to prove.
(3): In Chapter 4.5 we will prove that the Deligne complex of a right-angled
Artin group is the geometric realization of a building. It then will follow from
Theorem 4.2.9 that the Deligne complex is a complete CAT(0) space, the result
then follows from Theorem 2.3.7. One important detail here is that the Moussong
metric on the Deligne complex (Definition 2.11.7) and the metric on the building
coincide (see Definition 4.2.8).

For general Artin groups, some simple question remains unsolved.

Conjecture 3.3.11. Let AΓ be an arbitrary Artin group, then the following are
satisfied

(i) AΓ is torsion-free;

(ii) AΓ has solvable word problem;

(iii) AΓ is linear;

(iv) if AΓ is irreducible (i.e. AΓ ̸= AΓ1 × AΓ2), then we have

Z(AΓ) =

{
Z if AΓ is of finite type;

{1} if AΓ is of infinite type.

.

All the conjectures in Conjecture 3.3.11 have a positive answer if AΓ is of finite
type. Part (ii) is solved for Artin groups of FC-type [3]. For some more results
we refer to [11].
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4
Buildings

In the theory of Artin groups, if the Artin group is right-angled; then we will
encounter buildings. Since the geometric realization of a building will be CAT(0),
this section will also give a proof for Theorem 3.3.10. Moreover, being CAT(0)
will make sure the constructions in Chapter 5 will work, and this will then be
crucial in some quasi-isometric properties of right-angled Artin groups in Chapter
6.

4.1 Definitions

There are multiple equivalent definitions of a building (or Tits building). In this
thesis, we will use the one from the book by M. Davis [24]. First we define the
set of reduced words where the alphabet is the set of generators of a Coxeter
group WΓ.

Definition 4.1.1. Let WΓ be a Coxeter group. Let S := V (Γ).

1. Let S∗ be the set of all possible finite words in S, i.e.,

S∗ := {s1s2 · · · sn | n ∈ N & si ∈ S};

2. [24, Definition 3.4.1] An elementary M-operation on a word in S∗ is one
of the following operations: either deleting a subword of the form ss or
replacing a subword of the form ss̃ss̃ · · · of length ms,s̃ to s̃ss̃s · · · of length
mss̃.

3. A word is M-reduced if it cannot12 be shortened in length by some M-
operations.

Definition 4.1.2. Consider a set S. A chamber system over the set S is a pair
(C, S) =: Φ with C a set such that for every s ∈ S there is an equivalence relation
Rs ⊆ C × C on C. We call the elements of C chambers.

12If mss̃ = 2 the words ss̃ and s̃s are two different M-reduced words.
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(i) Two chambers c and c′ are s-adjacent if they are s-equivalent. In this case,
we also denote c ≡s c′.

(ii) If for c and c′ ∈ C there exists c0, c1, . . . , cn such that c = c0 ≡s1 c1 ≡s2
· · · ≡sn cn = c′ for s̄ := s1s2 · · · sn ∈ S∗, then we call (c0, c1, . . . , cn) a
s̄-gallery connecting c with c′.

(iii) For a subset T ⊆ S, consider RT ⊆ C a subset of chambers such that
c ∈ RT if and only if ∀c′ ∈ RT , there is a T ∗ ∋ t̄ gallery connecting c with
c′. Then RT is called a T -residue (or T -connected component). If T is a
singleton T = {s}; then Rs is called a s-panel.

(iv) For T ⊆ S and c ∈ C, we denote [c]T for the T -connected component
containing c.

(v) The rank of a T -residue is |T |.

(vi) A residue RT is spherical if WT is finite.

Example 4.1.3. Consider a group G with a family of subgroups ∀s ∈ S,Hs ≤ G,
and a subgroup B such that B ≤ Hs ≤ G. Then we define a chamber system
Φ(G,B, {Hs}s∈S) as follows: The set of chambers is the set of cosets in G/B.
Two chambers gB and g′B are s-adjacent if and only if gHs = g′Hs.

Definition 4.1.4. Suppose WΓ is a Coxeter group. A chamber system Φ =
(C, S) over S = V (Γ) is a building of type Γ if it satisfies the following conditions:

(i) Every s-panel contains at least 2 chambers, i.e. ∀s ∈ S,∀c1 ∈ C, |[c]s| ≥ 2;

(ii) There exists a map δ : C×C → W called the WΓ-valued distance function,
satisfying

(∀c1, c2 ∈ C)(∀s̄ ∈ S∗ M-reduced)
(
w(s̄) = δ(c1, c2)

⇔ there is a s̄ gallery connecting c1 with c2

)
,

where w(s̄) := s1s2 · · · sn ∈ WΓ as value in WΓ.

If a chamber system is a building we will use the notation B instead of Φ.

You can check yourself that the chamber system in the following definition is a
building.

Definition 4.1.5 (Abstract Coxeter complex). For WΓ a Coxeter group, the
chamber system BWΓ

:= Φ
(
WΓ, {1}, (W{v})v∈V (Γ)

)
is called the abstract Coxeter

complex of WΓ. This is a building of type Γ for the following distance function

δWΓ
: (w1, w2) 7→ w−1

1 w2.

This building is important, since it will always be the smallest possible building
of a given type. Moreover, it only consists of one apartment (see Definition
4.1.7).
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Definition 4.1.6. Let B be a building of type Γ.

(i) A residue RT (with T ⊆ S = V (Γ)) is a spherical residue if WT is finite.

(ii) The chamber graph ΛB of B is the graph with vertices V (ΛB) := C (the
chambers of B). There is a labeled edge between c and c′ with label s ∈
V (Γ) if and only if they are s-adjacent.

Definition 4.1.7 (Apartment). ] Consider B = (C, S) a building of type Γ.
An apartment in (C, S) is the image of a map α : WΓ → C which satisfies the
following:

(∀w1, w2 ∈ WΓ)
(
δB
(
α(w1), α(w

′
2)
)
= δWΓ

(w1, w2)
)
.

Property 4.1.8 ([44, (3.7) Corollary]). In a building any two chamber are con-
tained in a common apartment.

4.2 Geometric realization

Definition 4.2.1. Let B be a building of type Γ and let C(B) := {RT | T ⊆
V (Γ),WT is spherical} be the set of spherical residues now seen as a poset (by
inclusion). The geometric realization of B is

Geom(B) := Geom
(
Flag

(
C(B)

))
.

This geometric realization is also called the Davis realization.

Remark 4.2.2. The abstract Coxeter complex BWΓ
from Definition 4.1.5 is the

smallest building of type Γ. This building only consists of one apartment. The
connected components or residues are of the form gWΛ with Λ ⊆ Γ, so the
spherical residues correspond to the spherical cosets, i.e. C(BWΓ

) = WΓSf .

Example 4.2.3. (i) The chamber graph of BWΓ
of type Γ := •a •b is given

in Figure 4.2.1. The vertices correspond to the elements of WΓ, which are
the chambers of B. The label s of an edge between w and w′ corresponds
with elements of V (Γ) such that w ≡s w′, s ∈ V (Γ).

ΛB =
•a

•
b

•ba = ab •1
b

a

a

b

Figure 4.2.1: Chamber graph of
one apartment of type Γ.

{1, b} = Rb = W{b}

{1, a} = Ra = W{a}

{a, ab} = R′
b = aW{b}

{a, ab} = R′
a = bW{a}

{1, a, b, ab} = Ra,b = W{a,b}
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Clearly the chamber graph (Figure 4.2.1) of this building coincides with
the Cayleygraph of WΓ and with the 1-skeleton of the Davis complex of
WΓ. Because we have a clear understanding of the spherical residues of
this building one easily compute the geometric realization In figure 4.2.2.

Geom(BWΓ
) =

• a

• b

•ba = ab

•
W{a}•

bW{a}

•
W{b}

•
aW{b}

•
W{a,b}

• 1

Figure 4.2.2: Geometric realization of an apartment of type Γ.

This geometric realization is exactly the same as geom
(
Flag(WΓSf )

)
.

(ii) Suppose Γ := •
a

•
b3
. Then the geometric realization of one apartment

is the following simplicial complex.

Geom(BWΓ
) =

•
WΓ

•1•ba

•aba • a

•
b

•
ab

•
W{a}•

baW{b}

•
W{b}

•
bW{a}

•
abW{a}

•
aW{b}

Figure 4.2.3: The geometric realization of one apartment of type Γ

This is again the same as geom
(
Flag(WΓSf )

)
, and also as the barycentric

subdivision of the Davis complex in Example 2.7.3.

Remark 4.2.4. In Construction 2.11.1 we give a different construction of the
Davis complex (this was the dual to the convex polytope constructed in Definition
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2.7.1). Here it does not matter what construction we use, since the barycentric
subdivision of dual convex polytopes are isomorphic as simplicial complexes.

Theorem 4.2.5 ([44, (3.5) Theorem]). Let B be a building of type Γ and RΛ a
residue of type Λ ≤ Γ. Then we have the following

(i) For every two x, y ∈ RΛ, we have δB(x, y) ∈ WΛ.

(ii) The residue RΛ is a building of type Λ.

Hence, it also makes sense to talk about Geom(RT ) as subcomplex of Geom(B).

Lemma 4.2.6. Let BΓ be the building of type Γ consisting of one apartment, and
let CΓ be the Davis complex of WΓ. Then we have that

Geom(BΓ) = barycentric subdivision of CΓ.

Remark 4.2.7. Here we extend the work done in Remark 2.7.6. We have that

Geom(BWΓ
) ∼= Geom

(
Flag

(
Face(CWΓ

)
)) ∼= Geom

(
Flag(WΓSf )

)
.

This means in some sense the Davis complex of WΓ is a building of type Γ even
more so it is the smallest building of type Γ because it only consists of one
apartment. In Section 4.5 we will deduce that there exists a building BAΓ

such
that Geom(BAΓ

) ∼= Geom(Flag(AΓSf )) for a right-angled Artin group AΓ.

It will turn our that the geometric realization of a building is CAT(0), however
first we need to define what metric we will use on these structures. One possibility
is the induced metric on the simplices like in Example 2.1.3, however this metric
is to general and does not use the geometric structure of WΓ.

Definition 4.2.8 (Piecewise euclidean metric on Geom(B), [24, page 337]). We
will define the following metric on the geometric realization of a building BΓ of
type Γ. In Remark 2.8.9 we defined the metric on the Davis complex as piecewise
metric induced by the orbit of KΓ by the action of WΓ. One can prove ([24,
Section 18.2]) that there is an isomorphism between the geometric realization

of a chamber c (i.e. Geom
(
{F ∈ C(B) | c ∈ F}

)
) and KΓ := geom

(
flag(SfΓ)

)
(Definition 2.6.1). Hence, just as for the Davis complex we have that K tiles
whole geom(B). We define the metric on geom(B), as the piecewise metric of K.

Theorem 4.2.9 ([24, Theorem 18.3.1]). The geometric realization of any build-
ing is a complete CAT(0) space.

Corollary 4.2.10 ([24, Corollary 18.3.7]). The geometric realization of any build-
ing is contractible.

Proof. This is the case for all CAT(0) spaces Theorem 2.3.7.

Remark 4.2.11. For right-angled Coxeter groups, we can define the geomet-
ric realization of WΓSf including its Moussong metric also differently using the
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notion of graph product (Definition 2.9.1) one can define the cubical representa-
tion of the fundamental domain as in Definition 2.6.1 and Remark 2.6.2 also as∏̃

v∈V (Γ)([0, 1], 0). Sometimes this is also called the Davis chamber because it is
isomorphic to the geometric realization of a chamber i.e. the subcomplex of the
apartment BWΓ

spanned by the cosets C ∈ WΓSf that contain a fixed chamber
c ∈ BWΓ

. We extend this metric the like we did in Remark 2.8.9.

4.3 Right-angled buildings

In the upcoming section a building we will always be a right-angled building,
unless stated otherwise. The theory of right-angled buildings will be useful in
Chapter 5. For right-angled Artin groups the Deligne complex will be a right-
angled building (Section 4.5).

Example 4.3.1. In Example 4.1.3 we constructed the geometric realization of

one apartment of type Γ := •
a

•
b2

in Figure 4.2.2. If we remove the edges
between the rank 0 residue and the rank 2 residue, we get a cube complex shown
in Figure 4.3.1.

Geom(BWΓ
) =

• a

• b

•ba = ab

•
W{a}•

bW{a}

•
W{b}

•
aW{b}

•
W{a,b}

• 1

Figure 4.3.1: Geometric realization of an apartment of type Γ.

Definition 4.3.2. A building B of type Γ is a Right-angled building if for every
i ̸= j ∈ V (Γ), mij ∈ {2,∞}.

Right-angled buildings are fun and easy to work with comparing the arbitrary
buildings. This is because we can define some ideas such as parallel residues.
They are also easy to construct, Example 4.1.3 gives a way to construct chamber
systems. One can use this to find a Right-angled building for every choice of the
cardinality of the panels (in Construction 4.3.7).

Definition 4.3.3. Let B a building of type Γ.

(i) For two chambers c1 and c2, we denote d(c1, c2) to be the minimal length
of a word in wΓ that represent δ(c1, c2).
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(ii) We define the distance between two residues R1 and R2 to be the minimal
distance between chambers of them, i.e.

d(R1,R2) := inf{d(c1, c2) | c1 ∈ R1, c2 ∈ R2}

.

(iii) For every residue R there is a projection map projR : B → R, where
projR(c) ∈ R is the unique13 chamber c′ in R such that d(c, c′) = d(c,R).

(iv) Two residues R1 and R2 are parallel if we have projR1(R2) = R1 and
projR2(R1) = R1.

Similar to how we could construct a cubical structure on the Davis and Deligne
complex (Construction 2.11.4), we can do the same for right-angled buildings.

Construction 4.3.4. Let B be a right-angled building, define the cubes as
follows

[R1,R2] := {R ∈ C(B) | R1 ⊆ R ⊆ R2},

this would be a
(∣∣[R1,R2]

∣∣− 1
)
-dimensional cube.

This cubical structure coincide to the geometric realization Geom(B) where we
use in Definition 4.2.1 the cubical structure of the fundamental domain / Coxeter
block from Definition 2.6.1. See also Remark 4.2.11.

Lemma 4.3.5 ([33, Lemma 3.12]). If two residues R1 and R2 are parallel then
Geom(R1) and Geom(R2) are parallel for the CAT(0) metric.

Definition 4.3.6. A building B is semi-regular if for all s ∈ S the cardinality
of different s-panels is the same being qs(≥ 2). In this case we say that B has
thickness q⃗ := (qs)s∈S.

Construction 4.3.7. [15] Choose Γ a right-angled graph and q⃗ = (qs)s∈V (Γ)

arbitrary. Let Xs be an arbitrary group of cardinality qs. Define

GΓ(X⃗) := *
s∈S
Xs/

〈
[Xs, Xt] | s, t ∈ S, s ∼ t in Γ

〉
.

Now consider Φ
(
GΓ(X⃗), {1}, (Xs)s∈S

)
as in Example 4.1.3. We claim that

this is a right-angled building where the cardinality of every s-panel is precisely
|Xs/{1}| = |Xs| = qs.

Theorem 4.3.8. The chamber system constructed in Construction 4.3.7 is a
Right-angled building of type Γ and thickness q⃗.

Proof. See [23, Theorem 4.2 & Theorem 5.1].

Theorem 4.3.9 ([30, Proposition 1.2]). For every right-angled type Γ and thick-
ness q⃗ = (qi)i∈V (Γ) there is a unique right-angled building B of type Γ and thick-
ness q⃗ (up to isomorphism).

13this is the case by [?, Proposition 5.34]
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For right-angled Artin group we have a nice decomposition or spherical residues.
This decomposition will be useful in next section about blow-up buildings. It
also gives a sign that the Deligne complex of a right-angled Artin group will be
a building (Section 4.5) since there the spherical cosets gA∆ ∈ AΓSf correspond
with

∏
i∈∆ Z structure.

Lemma 4.3.10. Let B be a right-angled building of type Γ. Let R be a spherical
residue of a type J ⊆ V (Γ) and rank k := |J |. Then we can write the residue R
as the product of n many rank 1 residues R ∼=

∏
i∈J Ri.

Proof. We have that R is a building of type the complete graph of k vertices
(since these are the only spherical right-angled Coxeter groups), pick c0 ∈ R a
chamber. Consider in this building R the si panels Ri containing c0 for each
i ∈ J . All these residues Ri are also buildings (Theorem 4.2.5) consider the
following map

ϕc0 : R →
∏
i∈J

Ri :

c 7→
(
projR1(c), projR2(c), . . . , projRk

(c)
)
.

We are left to check that this is an isomorphism, i.e. bijective and c1 ≡s′ c2 if
and only if ϕ(c1)s′ ≡s′ ϕ(c2)s′ and ϕ(c1)s = ϕ(c2)s for all s ∈ J \ {s0}. For this
we refer to [33, Theorem 3.13].

Remark 4.3.11. If we have two spherical residues of a right-angled building
R′ ⊆ R (of type J ′ and J respectively). Then we can always write

R = R′ ×
∏
i∈J\J ′

Ri,

by choosing c0 ∈ R′ ⊆ R in the proof of Lemma 4.3.10. For more information
on this see [44, (3.10) theorem]. This way we can also see R′ as a subset of the
decomposition

∏
i∈J Ri as follows

R′ =
∏
i∈J ′

Ri ×
∏
i∈J\J ′

{c0}.

4.4 Blow-up buildings

Definition 4.4.1 ([33, Definition 5.6]). For a right-angled building B, a blow-up
data is a collection of maps H = {hR : R → Z | R a rank 1 residue of B}. Such
that if R1 and R2 are parallel then,

hR2 = hR1 ◦ projR1|R2 and hR1 = hR2 ◦ projR2 |R1 .

The blow-up chamber graph is the graph with vertex set the set of chambers.
Two chambers c and c′ are adjacent if they are in the same s-panel R with
|hR(c)− hR(c′)| ≤ 1.
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Lemma 4.4.2 ([33, Lemma 5.7]). Let R be a spherical residue of type J ⊆ V (Γ)
such that R =

∏
i∈J Ri (see Lemma 4.3.10). Suppose there is a blow-up data

{hR : R → Zrank(R) | R a spherical residue}, then we can define map

hR : R → Zrank(R) as hR :=
∏
i∈J

hRi
◦ ϕc0 .

Moreover, it follows that if R and R′ are two parallel spherical residues, we have

hR ◦ projR|R′ = hR′ and hR′ ◦ projR′ |R′ = hR.

Lemma 4.4.3. Let {hR | R a rank 1 residue} be a blow-up data of the right-
angled building B. Consider two spherical residues R′ ⊆ R. Then there exist a
map hR′,R : Zrank(R′) → Zrank(R) such that the following diagram commutes

R′ R

Zrank(R′) Zrank(R)

i

hR′ hR

hR′,R

(4.1)

Proof. Choose c0 ∈ R′ (as in proof of lemma 4.3.10) then we have

R′ =
∏
i∈J ′

Ri
∼=
∏
i∈J ′

Ri ×
∏
i∈J\J ′

{c0} ⊆
∏
i∈J

Ri = R.

Then define hR′,R as follows

hR′,R : Zrank(R′) → Zrank(R) :

n⃗ 7→ {n⃗} ×
∏
i∈J\J ′

{hRi
(c0)}.

It is easy to verify that this map satisfies the lemma.

This notion of a blow-up building will be useful in Section 5.6. However, it has
also a very natural meaning, that we will see in next section (See example 4.5.5).

4.5 The Deligne complex of a right-angled Artin

group is a building

In this section we answer the question if the Deligne complex (i.e. Geom
(
flag

(
AΓSf

))
defined in Definition 2.10.2) of an Artin group is a building B, in the sense that
the chambers of B correspond to the elements of AΓ and two chambers v, w ∈ AΓ

are s-adjacent (for s ∈ V (Γ)) in B if and only if vA{s} = wA{s}. The reason we
want this to be to meaning of “the Deligne complex is a building” is, since then
we have precisely that two chambers are in the same R spherical residue of type
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∆ (a subgraph of Γ) if and only if they are contained in the same spherical coset
in AΓSf of the form gA∆. Just as it was the case for BWΓ

and the Davis complex
WΓSf . Also, it will make sure the Moussong metric on the Deligne complex
(Definition 2.11.7) coincides with the CAT(0) metric on the building.

One would think this is the case because the Davis complex is a building and the
Deligne complex is build out of the Artin group the same way the Davis complex
is build out if the Coxeter group. Even more every vertex in the Deligne complex
is contained in a subcomplex isomorphic with the Davis complex, and the Davis
complex is exactly one apartment. Unfortunately in general it will not be a
building.

Example 4.5.1. (i) Consider the Artin group of type Γ := •
a

•
b3
. Since

the maximal length of elements inWΓ is 3, the distance between two cham-
bers cannot be bigger than 3. However, suppose a building B exists satis-
fying the above, then one can check that ab−1 and ba−1 have distance at
least 4. So AΓSf will not be a building.

(ii) Now let AΓ be the right-angled Artin group of type Γ := •
a

•
b2
. With

some abuse of notation the complex in Figure 2.10.1 of Construction 2.10.3
is the Deligne complex of AΓ. One can check this forms a building of type
Γ for the following map

δ : AΓ × AΓ → WΓ : (v, w) 7→


1 if v =AΓ

w;

a if v ̸=AΓ
w and vA{a} = wA{a};

b if v ̸=AΓ
w and vA{b} = wA{b};

ab(= ba) otherwise.

This map coincides with (v, w) 7→ (v−1w)WΓ
, here we mean with (·)wΓ

the
value of this element if WΓ (i.e. the image under te map AΓ → WΓ).

For right-angled buildings this will be the case in general. We first notice one
important remark.

Remark 4.5.2. The set of spherical cosets AΓSf (i.e. cosets of spherical sub-
groups see Definition 1.1.6) of a right-angled Artin group are the cosets of the
abelian subgroups AΛ(=Z|V (Λ)|) where Λ spans a clique in Γ.

Theorem 4.5.3. Let AΓ an arbitrary right-angled Artin group and let V (Γ) =
{s1, s2, . . . , sn}, then there is a building B of type Γ satisfying the following:

(i) The Chambers of B correspond with the elements of AΓ.

(ii) Two chambers c1, c2 ∈ B are si-adjacent if and only if c1A{si} = c2A{si}.

(iii) We have that Geom(B) ∼= Geom
(
Flag(AΓSf )

)
.
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(iv) A rank k spherical residue in B, correspond with a coset gAΛ in AΓSf such
that |V (Λ)| = k. Moreover, the spherical residues that contain a given
element g ∈ AΓ are precisely the cosets gAΛ where Λ ⊆

clique
Γ.

Proof. Let Xs := A{s} ∼= Z in Construction 4.3.7, then GΓ

(
(A{s})s∈S

)
= AΓ.

From Theorem 4.3.8 we have that Φ
(
AΓ, {1}, (A{s})s∈S

)
is a building. One can

easily verify that it satisfies the statement. See also [23, Theorem 5.1].

Definition 4.5.4. Let AΓ be a right-angled Artin group then the associated
building denoted by BAΓ

is the building form Theorem 4.5.3.

Example 4.5.5. Consider the following building B of type Γ := •
a

•
b2
. The

chamber are the elements of Z × Z = AΓ. The set Z × Z can be visualized
as a grid (by looking at its Cayleygraph, also see Figure 2.10.1). We define two
equivalence relations; two vertices are a-equivalent if they lay on the same vertical
line and b-equivalent if they are on the same horizontal line. Every vertical line
is an a-residue (or a-panel) and every horizontal line is a b-residue (all in Figure
2.10.1). There is only one rank 2 residue and that is the whole plane containing
every point on the grid. In Figure 2.10.1 we see that the lines (rank 1 residues)
correspond with the cosets of AΓ. In this way we visualize the building B as a
grid. This is actually the way a blow-up building works. Let gAa and hAb be
arbitrary cosets of rank 1, the maps of the blow-up building are

hbiAa
: biAa → Z : bian 7→ n;

haiAb
: aiAb → Z : aibn 7→ n.

In this case al rank 1 residues of the same type are parallel (this is not to
case in general not for arbitrary right-angled building nor for arbitrary buildings
constructed in Theorem 4.5.3), with the following projection maps

projbjAa
(biAa) : b

iAa → bjAa : b
ian 7→ bjan;

projajAb
(aiAb) : a

iAb → ajAb : a
ibn 7→ ajbn.

4.6 Non-right-angled Artin groups are never Build-

ings

Unfortunately, for non-right-angled Artin groups the Deligne complex will never
be a building. This is partially the case since that for right-angled Artin groups
we have that ab = ba⇒ a−1b = ba−1 while in the non-right-angled case abab · · · =
baba · · ·⇏ a−1ba−1b · · · = ba−1ba−1 · · ·. We first prove the following.

Lemma 4.6.1. Let AΓ an Artin group of type Γ := •
a

•
bn

with n > 2. Then
AΓ cannot be written as a finite product of the subgroup Aa and Ab, i.e.

∀m ∈ N, AΓ ̸= AaAbAaAa . . .︸ ︷︷ ︸
m sets

. (4.2)
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Before proving this we discuss this in general, a group G is boundedly generated
if there is a finite set of elements S := {s1, s2, . . . , sm} ⊆ G such that

G = {sk11 sk22 · · · skmm | si ∈ S, ki ∈ N}.

It is known that free groups (of rank ≥ 2) are not boundedly generated. More-
over, a finite index subgroup H ≤

finite index
G is boundedly generated if and only if

G is. We also need the following lemma.

Lemma 4.6.2 ([4, Lemma 2.5]). Let AΓ be an Artin group of type Γ := •
a

•
bn

with n > 2. Then AΓ contains a finite index normal subgroup of the form Z×Fw
with Fw a free group of rank w. Moreover, AΓ/ (Z× Fw) ∼= Z/wZ.

Proof of Lemma 4.6.1. It is sufficient to prove that AΓ is not boundedly gener-
ated. By lemma 4.6.2, we know that AΓ contains a finite index subgroup Z×Fw,
if w = 1 then we would have AΓ

∼= Z×Z, which is a contradiction (since, n > 2).
Hence, w ≥ 2. We prove that if Z × Fw is boundedly generated, then so is Fw.
Suppose ∀(l, r) ∈ Z× Fw we have

(l, r) = (l1, r1)
k1(l2, r2)

k2 · · · (lm, rm)km ,

for a fixed m ∈ N. But then clearly every l ∈ Fw can be written as

l = lk11 l
k2
2 · · · lkmm ,

hence Fw is boundedly generated. Since this is a contradiction we know that
Z × Fm could not have been boundedly generated. Since Z × Fm ≤

finite index
AΓ,

AΓ is also not boundedly generated.

Clearly the previous proof does not work if n = 2, since then AΓ = AaAb. We
have now enough information to prove that non-right-angled Artin groups are
not buildings.

Remark 4.6.3. One important remark is that the “distance” in the group AΓ

with Γ := •
a

•
b2

between elements is the amount of generators we need, for
example a2b−5 and 1 have distance 7 between them. However, in a building BAΓ

the distance is only two, since 1 ≡a a2 ≡b a2b−5.

Theorem 4.6.4. Let AΓ an Artin group that is not right-angled, then there does
not exist a building B such the chambers are the elements of AΓ and two chambers
g, h ∈ AΓ are s-equivalent (with s ∈ V (Γ)) if and only if g ∈ hA{s}.

Proof. Suppose there is a building B satisfying the asked. Since AΓ is not right-

angled, there exist a subgraph of the form •
a

•
bn

=: Λ ⊆ Γ, where n > 2.
Consider x an element in AΓ that is not contained in AaAb · · ·︸ ︷︷ ︸

2n

(this exists by
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Lemma 4.6.1). We will prove that the distance in the alleged building B is at
least 2n+1, in our proof it will follow from Theorem 4.2.5. Clearly both x and 1
are contained in the same residue RΛ of type Λ. Hence, by Theorem 4.2.5 (i) we
have δB(x,1) ∈ WΛ, however, the maximal length between them can then only
be n, since the elements of WΛ have at most length n. However, the size of the
minimal gallery between them in the building RΛ(= AΛ) is at least 2n + 1 (by
choice of x). This is a contradiction.

In Lemma 4.6.1 we maybe did some “overkill” to prove that there are elements

in AΓ (for Γ := •
a

•
bn

with n > 2) that are at least n + 1 distance (as in
equivalences in the chamber system) of 1. One can probably do this easier by
picking x := ab−1ab−1a · · ·︸ ︷︷ ︸

n+1 terms

in the proof of Theorem 4.6.4. However, then you first

need to prove that x cannot be written as a product with fewer alternating gen-
erators, which is maybe more difficult than it looks. Other words like abababa · · ·

cannot be uses, for example ababa = a2ba2 if Γ := •
a

•
b3
. What we actually

proved in Theorem 4.6.4 is that the chamber system Φ
(
AΓ, {1}, (As)s∈V (Γ)

)
is

not a building.
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5
Constructing building from exploded Salvetti

complex

In the upcoming Chapter we will only work with right-angled Artin groups. We
will define the exploded Salvetti complex. This complex will give us an easy
way to go to the right-angled building associated to the Artin group. It will
also be useful in the quasi-isometric classification of right-angled Artin groups.
This complex was first introduced in [9] for AΓ two-dimensional (i.e. Γ does not
contain cliques of more than two vertices) and in [33] by Huang and Kleiner for
all right-angled Artin groups. There will be a map from the exploded Salvetti
complex to the right-angled building, this map will turn out to be a restriction
quotient map, which we will define now.

5.1 Restriction quotient maps

For a CAT(0) cube complex there is a natural notion of a hyperplane, this is a
subspace that “cuts” the cube complex in two parts. For this we first define it
for regular cubes.

Definition 5.1.1. A midcube of on n-dimensional cube [0, 1]n is s subset of the
form

[0, 1]i−1 ×
{
1

2

}
× [0, 1]n−i ⊆ [0, 1]n.

Hence, an n-dimensional cube has n many midcubes.

Definition 5.1.2. Let X be a CAT(0) cube complex. Consider the following
relation between edges of X. Let e ∼ e′ if they are opposite a 1 cube. Then
consider the equivalence relation on the edges of X generated by the relation ∼.
Denote the equivalence class of an edge by [e] (i.e. [e] is the set of edges such
that for every edge e′ ∈ [e] there is a sequence of edges e = e1, e2, . . . , ek = e′

such that ei and ei+1 are opposite one another in a 1 cube). A hyperplane H
dual to an edge e0 = [0, 1] ⊆ X is the union of midcubes H := ∪iMi such that
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every of these midcudes intersect at least one edge e ∈ [e0]. We denote the set
of hyperplanes of X by Ĥ. If a hyperplane H intersect an edge e we call H dual
to e.

For CAT(0) cube complexes this notion of hyperplanes behaves nicely.

Theorem 5.1.3 ([45, Theorem 1.1]). Let X be a CAT(0) cube complex. Then
the following hold.

(i) For every hyperplane H the inclusion H → X is injective.

(ii) Every hyperplane separates X in exactly two components.

(iii) Every hyperplane is a CAT(0) cube complex.

Example 5.1.4. Consider the following cube complexes.

•

X1 =

•
•

•
•

•
•

•
•

X2 =

•
•

•
•

•
•

•
•

•

The cube complex X1 has 3 hyperplanes, the cube complex X2 has one more.

From Theorem 5.1.3 (ii) we can define halfspaces.

Definition 5.1.5. Let X be a CAT(0) cube complex with the set of hyperplanes
being Ĥ. A halfspace is the closure of one of the two components of X that is
separated by a hyperplane. We denote the set of halfspaces by H. For a subset
of hyperplanes K̂ ⊆ Ĥ we also denote K to be the set of halfspaces that are
separated by hyperplanes of K̂.

We will see that a CAT(0) cube complex is uniquely determined by its set of
hyperplanes. This will the be useful to define special maps between CAT(0) cube
complex (which will be called restriction quotient maps), they will be determined
from the moment we establish which hyperplanes we keep and which we forget.
It will turn out that the set of halfspaces will form a “pocset”.

Definition 5.1.6 ([43, page 4]). A pocset (P,≤, ∗) is a poset with an involution
map ∗ : P → P , that satisfy; for every A ∈ P we have that A∗ is not comparable
to A (i.e. A ≰ A∗ and A ≱ A∗). A pocset has finite interval condition if for every
pair A,B ∈ P such that A ⊆ B we have #{C ∈ P | A ⊆ C ⊆ B} is finite.

Lemma 5.1.7. For a CAT(0) cube complex X with the set of hyperplanes Ĥ, the
set of halfspaces forms a pocset for the inclusion and for the following involution
map:

(·)c : H → H :

A 7→ Ac i.e. the closure of the complement in X.

58



Proof. Exercise.

Theorem 5.1.8 (Sageev & Roller [16, Section 2.3]). For every pocset (P,≤, ∗)
(with finite interval condition) there is a unique CAT(0) cube complex such that
the pocset (H,⊆, (·)c) isomorphic is with (P,≤, ∗).

Sketch of proof. We give the idea of how one would construct a cube complex
from a pocset. For every ultrafilter F ⊆ P we have one point. We draw an
1-cube between two points if they differ by only one element. One then attaches
an n-cube for every time we see an n-cube in the 1-skeleton. For a detailed
description see [16, Section 2.3] and [45, Section 2].

By Theorem 5.1.8 we can reconstruct our CAT(0) cube complex by just knowing
the set of Hyperplanes. Having this we can define the following.

Definition 5.1.9 (Restriction quotient map). A map q : X → Y between two
CAT(0) cube complexes is a restriction quotient map if it can be constructed as
follows: there exist a subset K ⊆ HX of halfspaces that is closed under taking
(·)c such that Y ∼= X(K) and

q : X → X(K̂) : F 7→ F ∩ K,

here we identified a vertex of a cube complex with its ultrafilter (see proof of
Theorem 5.1.8). This can then be extended to a surjective cubical map (for more
information [33, Definition 4.1]).

Example 5.1.10. Consider the following cube complex.

• •

• •

• •

• •

•

•

• •

• •

• •

• •

•

•

• •

• •

•

Figure 5.1.1: Cube complex and its hyperplanes

This cube complex has 6 hyperplanes, and we denote K̂ to be the set of hyper-
planes in Figure 5.1.1 that are not dashed (here |K| = 3). Then the restriction
quotient map q : X(H)→ X(K), send X to the cube complex on the right side
in Figure 5.1.1.

We will need the following lemma in Section 5.7.

Lemma 5.1.11 ([33, Lemma 4.3]). Let X be a CAT(0) cube complex. Let

q : X
(
ĤX

)
→ X

(
K̂
)

a restriction quotient map, with K̂ be a subset of the

hyperplanes of X. Let α : X → X be a cubical isomorphism such that for every
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edge e ⊆ X; e is dual to a hyperplane of K̂ if and only if α(e) is dual to a

hyperplane of K̂. Then α induces an isomorphism X
(
K̂
)
→ X

(
K̂
)
.

5.2 Exploded Salvetti complex

Like the Salvetti complex which was a graph product of circles, the exploded
Salvetti complex will be a graph product of a space that is homotopy equivalent
to a circle (it will be a lollipop (see [33, page 544])). We first give the definition
of the Salvetti complex for right-angled Artin groups again as a reminder.

Definition 5.2.1 (Salvetti complex). The Salvetti complex SΓ of a right-angled
Coxeter group WΓ is the Γ-graph product constructed if for every v ∈ V (Γ) we
use (Xv, pv) := (S1, (0, 1)) in Definition 2.9.1. Hence,

SΓ :=
∏̃

v∈V (Γ)
(S1

v , •v) =
⋃

∆ ⊆
clique

V (Γ)

∏
v/∈∆

{•v} ×
∏
v∈∆

(S1
v , •v)

 ,

where S1 = • .

Definition 5.2.2 (Exploded Salvetti complex). Let L be the topological space
consisting of one circle S1 and one line of length one (isomorphic to [0, 1] ⊆ R)
attached to one point of the circle. We denote • to be the endpoint of [0, 1] that
has degree 1 in L. Let AΓ be an Artin group of type Γ, then the exploded Salvetti
complex denoted by SeΓ is the Γ-graph product

SeΓ :=
∏̃

v∈V (Γ)
(Lv, •v) =

⋃
∆ ⊆

clique
V (Γ)

∏
v/∈∆

{•v} ×
∏
v∈∆

(L1
v, •v)

 ,

where Lv := • ◦ . We will also denote this free endpoint by •v, and
the point connected with the circle by ◦v.

Example 5.2.3. (i) Let Γ := •
a

•
b
, then Figure 5.2.1 shows the Salvetti

complex and the exploded Salvetti complex.
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SΓ = •
SeΓ =

•
◦

◦

Figure 5.2.1: The Salvetti and exploded Salvetti complex of Γ.

(ii) Now consider Γ := •
a

•
b2
. Then the Salvetti complex (S1

a ×S1
b ) and the

Exploded Salvetti complex (La × Lb) are drawn in Figure 5.2.2.

SΓ =
∼=

•
•

SeΓ = ∼=
(•a, ◦b) (◦a, ◦b)

(◦a, •b)(•a, •b)

Figure 5.2.2: The Salvetti complex and the exploded Salvetti complex of type Γ.

Here the Salvetti complex is just a torus, the exploded Salvetti complex is
a torus (S1×S1) such that the two spanning loops extend to two cylinders
(S1 × [0, 1]) that are themselves attached via a [0, 1]× [0, 1] plane.

(iii) The exploded Salvetti complex of type Γ := • • • • is drawn on the
front page of this thesis.

Definition 5.2.4. Let AΓ be a right-angled Artin group of type Γ,

(i) We denote the universal cover of the Salvetti complex by SΓ and the uni-
versal cover of the exploded Salvetti complex by SeΓ.
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(ii) Let ϕ : SΓ → SΓ and ϕe : SeΓ → SeΓ be the respective covering maps. The
natural continuous map τ : SeΓ → SΓ that retracts the [0, 1] parts to a point
is a homotopy equivalence (i.e. it extends to an isomorphism τ ∗ between
π1(SeΓ) and π1(SΓ)). By definition of covering map (see also Lemma 6.9.3)
we can lift this map to a map τ : SeΓ → SΓ such that the following diagram
commutes.

SeΓ SΓ

SeΓ SΓ

τ

ϕe ϕ

τ

(5.1)

Remark 5.2.5. There is only one “vertex” in SΓ that being (•v)v∈V (Γ) (See also
Definition 2.9.15), that we also denote as just •. Consider now the following
points in Seg :

(∗v)v∈V (Γ), where ∗v =

{
• if v ∈ V (Γ) \∆,
◦ if v ∈ ∆,

where ∆ spans clique in Γ. There are in total |Sf | of these points in SeΓ. Indeed,
every spherical subgroup of A∆ ≤ AΓ correspond with one unique clique ∆ in
Γ, now by Definition 2.9.1 we see that every clique correspond with a unique
product and each product correspond with a unique choice of ◦v’s. A point of
SeΓ thus correspond to a set ∆ ∈ Sf . Hence, we can associate one unique k-torus
for every point (∗v)v∈V (Γ) in SeΓ, where k is the number of indices v ∈ V (Γ) such
that ∗v = ◦. This k-torus is the following∏

∗v=◦

(S1
v , ◦v)×

∏
∗v=•v

{•v} =
∏
v∈∆

(S1
v , ◦v)×

∏
v∈V (Γ)\∆

{•v}.

Definition 5.2.6. (i) Both the Salvetti complex and the exploded Salvetti
complex are cube complexes. Since they are a product of intervals [0, 1]
and circles S1 which are both 1-cubes, where in the first case there is a
1 cube glued on two different 0-cubes (or vertices) and in the second case
to the same vertex. The set of vertices of SΓ correspond to the singleton
{(•v)v∈V (Γ)}, the vertices of SeΓ are these constructed in Remark 5.2.5.

(ii) We will call the elements in ϕ−1(•) vertices in SΓ. The elements in ϕ−1
e

(
(∗v)v∈V (Γ)

)
vertices of SeΓ, where these vertices (∗v)v∈V (Γ) are constructed in Remark
5.2.5.

(iii) If we talk about a point in the cube complexes SΓ,SeΓ,SΓ,SeΓ, instead of a
vertex we mean an arbitrary point in these metric spaces (possibly in the
interior of a cube) not necessarily a 0-cube.

Example 5.2.7. We work further on Example 5.2.3.

(i) We had that Γ := •
a

•
b
. The exploded Salvetti complex contains 3
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vertices being (•a, •b), (◦a, •b) and (•a, ◦b). They are contained in the tori
(•a, •b), (S1

a, •b) and (•a, S1
b ) respectively.

(ii) We had that Γ := •
a

•
b
. The exploded Salvetti complex contains 4

vertices being (•a, •b), (◦a, •b), (•a, ◦b) and (◦a, ◦b). They are contained in
the tori (•a, •b), (S1

a, •b), (•a, S1
b ) and (S1

a, S
1
b ) respectively.

Since we will be working with liftings of path in the fundamental groups π1(SΓ)
and π1(SeΓ), it is useful to chose fixed basepoints.

Definition 5.2.8. By Theorem 2.9.17 we have that π1(SΓ) = AΓ. One can
easily see that also π1(SeΓ) = AΓ. From now on we will always choose that
same basepoint in these fundamental groups, that being (•v)v∈V (Γ) =: • for the
Salvetti complex and exploded Salvetti complex, and thus write π1(SΓ, •) and
π1(SeΓ, •). We will also choose fixed basepoints in the universal covers. Pick a
vertex •e0 ∈ ϕ−1

e

(
(•v)v∈V (Γ)

)
, and •0 ∈ τ(•e0).

Remark 5.2.9. (i) Since Diagram (5.1) commutes it is easy to see that the
chosen basepoint •0 ∈ τ(•e0) is contained in ϕ−1(•).

(ii) Since SΓ is the universal cover of SΓ, take basepoint •0 ∈ SΓ
(0)

= ϕ−1(•),
then each path p ∈ π1(SΓ, •) lifts to a path p̃ ⊆ SΓ starting at •0 with a

unique endpoint •1. We also have for every point •1 ∈ SΓ
(0)
, there is a

unique element a ∈ AΓ = π1(SΓ, •) that lifts to a path in SΓ starting at •0
and ending at •1 (for a proof, see [29, Theorem 7.4]). Similarly, for SeΓ.

(iii) Every hyperplane of the Salvetti complex is isomorphic to the Salvetti
complex of a subgroup (also see [45, Exercise 1.4]). The same holds for the
exploded Salvetti complex.

Example 5.2.10. Let Γ := •
a

•
b
, then the universal covers SΓ, SeΓ and cov-

ering maps are drawn in Figure 5.2.3.

SΓ =

• ••

•

•

•
•

•
•
•

•

•
••

•
••

ϕ−→ •
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SeΓ =

•
◦

◦ •◦◦•◦
◦

◦•
◦

◦•
◦

◦•
◦

◦•
◦

◦•
◦

◦•
◦

◦•
◦

◦•
◦

◦•◦

◦•◦

◦•
◦

◦•
◦

◦•
◦

◦•
◦

ϕe−→ •
◦

◦

Figure 5.2.3: Universal covers of SΓ and SeΓ.

We already saw in Theorem 3.3.10 (2) that SΓ is a CAT(0) space. This is also
true for the universal cover of the exploded Salvetti complex (see also [33, Page
567]). First we have the following.

Lemma 5.2.11 ([33, page 3]). The Salvetti complex and the exploded Salvetti
complex of right-angled Artin groups are non-positively curved cube complexes

Proof. By property 2.3.9.

Theorem 5.2.12. The universal cover SeΓ of the exploded Salvetti complex is a
CAT(0) space.

Proof. By Property 2.3.9, is SeΓ a non-positively curved cube complex space. By
Theorem 3.1.4 the universal cover S̄Γ is CAT(0).

Both the Salvetti complex and the exploded Salvetti complex are non-positively
curved. However, they are both not CAT(0) since this would be in contradiction
with Theorem 2.3.7, that states that they are contractible while they are both
not even simply connected.

5.3 Flats in the universal cover of the exploded

Salvetti complex

In this section we will define standard flats in the universal cover of the Salvetti
complex, these subspaces will be in one to one correspondence with the set of
spherical cosets AΓSf of our Artin group, and will be important to the link with
the associated right-angled building, which Theorem 4.5.3 (iii) already suggests.
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Definition 5.3.1. For AΓ an Artin group, let ∆ ⊆ V (Γ) with |∆| = k such that
∆ spans a clique in Γ.

(i) A subcomplex of SΓ is a standard k-torus if it is of the following form∏
v∈∆

(S1
v , •v)×

∏
v∈V (Γ)\∆

{•v},

which is a subcomplex consisting of a k-torus.

(ii) A subcomplex of SeΓ is a standard k-torus if it is of the following form∏
v∈∆

(S1
v , ◦v)×

∏
v∈V (Γ)\∆

{•v},

which is a subcomplex consisting of a k-torus, where S1
v ⊆ Lv.

For every clique ∆ ⊆ V (Γ) we will denote the T∆ for the standard |∆|-torus
(from the context it then needs to be clear if we mean a subcomplex of SΓ or
SeΓ).

Definition 5.3.2. A standard k-flat is a connected component of the inverse
image by ϕ of a standard k-torus T∆ for e certain clique ∆. In the context of
the exploded Salvetti complex a standard k-flat is a connected component of the
inverse image under ϕe of a standard k-torus T∆. We also call a 1-flat a standard
geodesic14.

Definition 5.3.3. A standard flat F in SΓ (or in SeΓ) has type ∆ and has rank
|∆| if ϕ(F ) = T∆ (or ϕe(F ) = T∆).

We will later prove that there is a bijection (Theorem 5.3.16) between these
standard flats and the spherical cosets of AΓ / spherical residues of the building
BAΓ

.

Definition 5.3.4. LetX be a CAT(0) cube complex with metric d(·, ·). Consider
two convex subsets C1, C2 ⊆ X. They are parallel if the maps d(·, C1)|C2 and
d(·, C2)|C1 are constant.

Example 5.3.5. We continue where we left off in Example 5.2.3 (ii) where we

had Γ := •
a

•
b2
. Both for the Salvetti complex as for the Exploded Salvetti

complex, there are 4 standard tori. In the Exploded Salvetti complex they are all
disjoint (with distance 1 between them), in the Salvetti complex they are never
disjoint.

� The standard tori of SΓ in Figure 5.2.2 is the vertex •, the red and blue
loops and the gray torus.

14One should be careful with this definition since here a standard geodesic will always be
isomorphic to the line R, while R can never be the image of geodesic as in Definition 2.3.1.
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� The standard tori of SeΓ in Figure 5.2.2 is the vertex (•, •), the red loop
starting at (•, ◦), the blue loop starting at (◦, •) and the torus with base
point (◦, ◦).

The standard flats for this example are explained later in Example 5.3.17.

Remark 5.3.6. (i) Let F ⊂ SΓ be a flat and ϕ(F ) = T∆. Since F is by
definition a connected component of ϕ−1(T∆), it universally covers T∆.
Hence, since the universal cover of a (|∆| =: k)-torus is isomorphic to Rk,
we have that F ∼= Rk. Similarly, if F ⊆ SeΓ is a flat with ϕe(F ) = T∆,
then F ∼= Rk. However, we will often look at a flat in the sense of a cube
complex with 0-skeleton Zk.

(ii) Let F be a standard k-flat of SeΓ, then τ(F ) =: F ′ is a k-flat in SΓ. This
is the case since Diagram (5.1) commutes and because τ is continuous it
maps connected spaces to connected spaces. However, F is not the inverse
image of F ′ under τ (i.e. F ⊊ τ−1(F ′)). More precisely, τ−1(F ′) will be
isomorphic to F ′ × [0, 1]m−k ∼= F × [0, 1]m−k, where m is the dimension
of the maximal dimensional torus containing the torus ϕ(F ′) and k the
dimension the torus ϕ(F ′).

Definition 5.3.7. Suppose a group G has an action on two spaces X and Y .
Then a map τ : X → Y is equivariant if for all points x ∈ X and elements g ∈ G
we have τ(vg) = τ(v)g.

Lemma 5.3.8. There is an action of AΓ on both SeΓ and SΓ, such that τ : SeΓ →
SΓ is an equivariant map.

Proof. Step 1: Define action: By Definition 5.2.4 (ii) we have an isomorphism
τ ∗ : π1(SeΓ)→ π1(SΓ). Consider the following isomorphisms

τ ∗ : π1(SeΓ, •) →̃ π1(SΓ, •),
ψ2 : AΓ →̃ π2(SeΓ, •),

ψ1 := τ ∗ ◦ ψ2 : AΓ →̃ π1(SΓ, •).

We will use the basepoints in the universal cover of the Salvetti complex from
Definition 5.2.8. Now consider a point v ∈ SeΓ and g ∈ AΓ, then there is a unique
closed path pv ∈ π2(SeΓ, •) which lifts to a path in SeΓ from •e0 to v. Then we
define vg to be the endpoint of to lift of the path ψ2(g) ◦ pv ∈ π1(SeΓ, •) to the
universal cover, we denote this lift by ψ2(g) ◦ pv . Similar for a point in v ∈ SΓ.
Step 2: Equivariant proof : Let v ∈ SeΓ be a point of the universal cover
of the exploded Salvetti complex, let pv be the path in SeΓ that lifts to a path
pv starting at •e0 ending at v in SeΓ. Then τ(pv) starts at •0 and ends at τ(v),
hence since the endpoints of lifts are determined by the closed path in SΓ we
have endpoint pτ(v) = endpoint τ(pv). Take g ∈ AΓ arbitrary, we need to prove
that τ(vg) = τ(v)g.

τ(vg) = τ
(
endpoint ψ2(g) ◦ pv

)
= endpoint τ

(
ψ2(g) ◦ pv

)
.
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Because Diagram (5.1) commutes, we have

ϕ

(
τ
(
ψ2(g) ◦ pv

))
= τ

(
ϕe

(
ψ2(g) ◦ pv

))
= τ

(
ψ2(g) ◦ pv

)
.

Hence, the endpoint of the lift of τ
(
ψ2(g) ◦ pv

)
coincides with the endpoint of

τ
(
ψ2(g) ◦ pv

)
.

endpoint τ
(
ψ2(g) ◦ pv

)
= endpoint τ

(
ψ2(g)

)
◦ τ (pv)

= endpoint τ ∗
(
ψ2(g)

)
◦ τ (pv)

= endpoint ψ1(g) ◦ pτ(v) = τ(v)g.

Definition 5.3.9. Since SΓ and SeΓ are spaces with fundamental group AΓ, there
is a natural action of AΓ on the points of SΓ and SeΓ. This action is defined in
the proof of Lemma 5.3.8.

Lemma 5.3.10. For a vertex •′ in SΓ (i.e. •′ ∈ ϕ−1
(
(•v)v∈V (Γ)

)
see Definition

5.2.6). We have that the inverse image τ−1(•′)(0) is isomorphic to the following
graph product.

∏̃
v∈V (Γ)

([0, 1]v, •v) =
⋃

∆ ⊆
clique

V (Γ)

∏
v/∈∆

{•v} ×
∏
v∈∆

(
[0, 1]v, •v

) ,

here [0, 1] = • ◦ . Moreover, the image of the vertices will map by ϕe to the

corresponding vertices in SeΓ.

Proof. In this proof we will regularly apply the commutativity of diagram (5.1).
We have ϕ(•′) = • ∈ SΓ. By Definition 5.2.4 of τ we have

τ−1(•) =
∏̃

v∈V (Γ)
([0, 1]v, •v) =: L.

However this space L is simply connected, hence the connected components of
ϕ−1
e (L) are all isomorphic to L. Since the Diagram (5.1) commutes, we have

that τ−1(•′) is contained in such a component call this L0. Suppose τ(L0) ⊋
•′, however ϕ

(
τ(L0)

)
= • and ϕ−1(•) are all disjoint point. Now since L0 is

connected and τ is continuous τ(L0) needs to be a connected component of the
inverse image ϕ−1(•). We conclude τ(L0) = •′.

Lemma 5.3.11. Consider the maps in Definition 5.2.4, then τ : SeΓ → SΓ maps
standard k-flats to standard k-flats.
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Proof. Let F ⊆ Seg be a standard flat, i.e., there is a certain clique ∆ ⊆ Γ such

that F is a connected component of ϕ−1
e

(∏
v∈∆⊆V (Γ)(S

1
v , ◦v)×

∏
v∈V (Γ)\∆{•v}

)
.

Since ϕe is a covering map, we have ϕe(F ) =
∏

v∈∆⊆V (Γ)(S
1
v , ◦v)×

∏
v∈V (Γ)\∆{•v}.

We also have that

τ

 ∏
v∈∆⊆V (Γ)

(S1
v , ◦v)×

∏
v∈V (Γ)\∆

{•v}

 =
∏

v∈∆⊆V (Γ)

(S1
v , •v)×

∏
v∈V (Γ)\∆

{•v} ⊆ SΓ

is a standard torus of SΓ. Since Diagram (5.1) commutes, we have

τ(F ) ⊆ ϕ−1

 ∏
v∈∆⊆V (Γ)

(S1
v , •v)×

∏
v∈V (Γ)\∆

{•v}


ϕ
(
τ(F )

)
=

∏
v∈∆⊆V (Γ)

(S1
v , •v)×

∏
v∈V (Γ)\∆

{•v}.

Hence, τ(F ) is contained in the inverse image of a k-torus. We are thus left
to prove that τ(F ) is connected, but this follows from the fact that continuous
maps send connected sets to connected sets.

Lemma 5.3.12. Let AΓ be a right-angled Artin group. A subset of vertices
G ⊆ ϕ−1(•) is the 0-skeleton of a flat F (i.e. G = F (0)) in SΓ if and only if G
coincides with the orbit15 of an arbitrary point x ∈ G by a spherical subgroup
A∆ ≤ AΓ, i.e., x

A∆ = G(= F (0)).

Proof. ⇒: We need to prove that G = F (0) is an orbit. We assume that F is a
flat, let T∆ = ϕ(F ) for a certain clique ∆ ⊆ V (Γ) (see Remark 5.3.6). Consider
x, y ∈ F (0), then there exists two unique paths x̃, ỹ ∈ π(SΓ, •) such that the
endpoint of the lift of these paths map to x and y respectively (see Figure 5.3.1).

SΓ ⊇ •
•0

•
y

• x

p

lift x̃

lift ỹ

= F

= T∆•
ϕ−→

ϕ(p)

x̃ỹ

Figure 5.3.1: Our situation in proof of Lemma 5.3.12

15of the action Definition 5.3.9
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Since F is connected, there is a path p ⊆ F from x to y. Since x, y ∈ F (0), the
path ϕ(p) ∈ T∆ ⊆ SΓ is a path form the base point • ∈ SΓ to the base point.
Hence, ϕ(p) ∈ π1(T∆, •) ∼= A∆.

xϕ(p) = (•0)x̃ϕ(p) = (•0)ỹ = y.

The second equality comes from the fact that the endpoints of p ◦ lift(x̃) and
lift(ỹ) coincide (being y).
⇐: We need to prove that G is the 0-skeleton of a standard flat. Pick x ∈ G, let F
be the connected component containing x of ϕ−1(T∆). We prove that F (0) = G.
Since G = xA∆ is given and xA∆ = F (0) by “⇒”, we have what we wanted.

The “if and only if” statement in Lemma 5.3.12 is not true for the universal
cover of the exploded Salvetti complex. However, the “only if” part is still true.

Lemma 5.3.13. Let AΓ a right-angled Artin group. A subset of vertices G is the
0-skeleton of a flat F (i.e. G = F (0)) in SeΓ then G coincides with the orbit of an
arbitrary point x ∈ G by a spherical subgroup A∆ ≤ AΓ, i.e. x

A∆ = G(= F (0)).

Proof. Similar to the proof of Lemma 5.3.12, with one easy extra argument,
since a priori we will not always have that ϕe(p) ∈ π1(SeΓ, (•v)v), since the image
ϕe(p) of a path p between x and y could be a path from vertices of the form
(∗v)v (rather than (•v)v). However, we can just extend this path in the simply
connected part of SeΓ to a path starting and ending in (•v)v.

One of the strengths of the exploded Salvetti complex, which will be mostly
important to define a restriction quotient map to the associated building, is the
fact that its flats in the universal cover are disjoint.

Lemma 5.3.14. Let AΓ be a right-angled Artin group. The standard tori in SeΓ
are all disjoint, also the standard flats in SeΓ are disjoint.

Proof. For the first part, consider ∆ ̸= ∆′ ⊆ V (Γ) such that they both span a
clique, and let T∆ and T∆′ be their respective torus. There exists, without loss
of generality v ∈ ∆ \∆′, then the coordinate at place v in T∆′ ⊆ SeΓ is always •v,
while the coordinates at position v in T∆ are elements in (S1

v , ◦v) ̸∋ •v. We are
left to prove that different flats in SeΓ are disjoint.

1. Case 1: Consider two flats that correspond to the same standard torus,
F ̸= F ′ ⊆ ϕ−1

e (T∆), for a clique ∆ ⊆ V (Γ). Suppose x ∈ F ∩ F ′, then
F = xA∆ = F ′ by Lemma 5.3.13.

2. Case 2: Consider two flats corresponding to different tori such that v ∈
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∆ \∆′ and

ϕe(F ) =
∏
v∈∆

(S1
v , ◦v)×

∏
v∈V (Γ)\∆

{•v},

ϕe(F
′) =

∏
v∈∆′

(S1
v , ◦v)×

∏
v∈V (Γ)\∆′

{•v}.

Suppose x ∈ F ∩ F ′, then (ϕe(x))v = • in ϕe(F ′) while (ϕe(x))v ∈ (S1
v , ◦v)

in ϕe(F ), which gives us a contradiction.

In general in the Salvetti complex SΓ the standard flats do need to be disjoint.

Lemma 5.3.15. Let AΓ be a right-angled Artin group. Every vertex v ∈ SeΓ
(0)

is
contained in a unique flat.

Proof. Take a point v ∈ SeΓ
(0)
. Then ϕe(p) = (∗i)i∈V (Γ) with ∗i ∈ {◦, •} (Defini-

tion 5.2.6). This corresponds to a unique clique in Γ and thus a unique torus T∆
(where ∆ := {i ∈ V (Γ) | ∗i = ◦}). Then v ∈ ϕ−1

e (T∆) such that v is contained
in a flat. By Lemma 5.3.14 this flat is unique.

Lemma 5.3.16. Let AΓ be a right-angled Artin group. Write flats(SΓ) and
flats(SeΓ) for the set of flats of SΓ and SeΓ respectively. There are bijections
ψ1 : flats(SΓ) → AΓSf (respectively ψ2 : flats(SeΓ) → AΓSf) between the flats of
SΓ (respectively SeΓ) and the set AΓSf of spherical cosets of AΓ that satisfy the
following:

(i) For a flat F ∈ flats(SΓ) for which ϕ(F ) = T∆ we have ψ1(F ) = gA∆ for a
certain g ∈ AΓ.

(ii) For a flat F ∈ flats(SeΓ) for which ϕe(F ) = T∆ we have ψ2(F ) = gA∆ for a
certain g ∈ AΓ.

(iii) The following diagram commutes

flats(SeΓ) flats(SΓ)

AΓSf

ψ2

τ

ψ1

. (5.2)

Proof. (i): We first prove there is a map ψ1 that is also is a bijection. Consider

the action AΓ ↷ SΓ with base point •0 ∈ SΓ
(0)
.

� Flats of rank 0: Consider a flat x of rank 0; this is a connected component
of ϕ−1(•). By Remark 5.2.9 (ii), we know there is a unique element ax ∈ AΓ

such that •ax0 = x (with •0 the base point of SΓ). We can now define ψ1 on
the points:

ψ1 : SΓ
(0) → AΓSf : x 7→ axA∅.
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� Consider F a flat of rank k for which xA∆ = F with |∆| = n (which is
possible by Lemma 5.3.12 for a x ∈ F ). Just as before, there is a unique
element ax ∈ AΓ such that •ax0 = x. We define:

ψ1 : flats(SΓ)→ AΓSf : F 7→ axA∆.

We are left to prove that this is well-defined. Consider a different y ∈ F (0),
we want to prove that axA∆ = ayA∆. However, Lemma 5.3.12 tells us that

x ∈ F = yA∆ , hence x ∈ •ayA∆

0 , this implies ax ∈ ayA∆.

We prove that this is indeed a bijection. Injective: suppose ψ1(F ) = ψ1(F̃ ) for
two flats, hence, axA∆ = ayA∆̃ (with ψ1(F ) = axA∆ and ψ1(F̃ ) = ayA∆̃), this
implies A∆ = A∆̃ and a−1

x ay ∈ A∆. Such that

F = xA∆ = xa
−1
x ayA∆ = •ayA∆

0 = yA∆ = F̃ .

Surjective: let aA∆ be a spherical coset. Consider the flat (•a0)
A∆ by Lemma

5.3.12 the result follows.
(ii): Since τ is equivariant (Lemma 5.3.8), we have that τ(F (0)) = τ(xA∆) =
τ(x)A∆ = F ′(0) , this is a flat by Lemma 5.3.12. This is also clearly a bijection.
(iii): We can prove this similarly to how we proved (i), but now sticking to using
vertices of SeΓ in ϕ−1

e

(
(∗v)v∈V (Γ)

)
. After doing this one verifies that Diagram 5.2

commutes. However, one can also check that ψ2 := ψ1 ◦ τ satisfies the asked.

Example 5.3.17. We continue from Example 5.2.3, Example 5.3.5 and Figure

5.2.2, where the defining graph was Γ := •
a

•
b2
. In Figure 2.10.1 (See Con-

struction 2.10.3) one can see the universal cover of the Salvetti complex, which is
a R×R grid with 1-skeleton Z×Z. The standard flats are the points, horizontal
and vertical lines and the R2 plane itself. We now draw the universal cover of
the exploded Salvetti complex

◦
◦

◦
◦

◦
◦

◦ ◦

◦
◦

◦
◦

◦◦◦

◦ ◦ ◦ ◦ ◦

∗ ∗ ∗ ∗ ∗

∗
∗

∗
∗
∗

∗
∗

∗
∗
∗

◦ ◦

◦

◦

◦

◦

••

Figure 5.3.2: Universal cover of the exploded Salvetti complex.

In Figure 5.3.2 only a portion of the universal cover is drawn, above every hori-
zontal and vertical line in the gray plane is a green strip. Where two green strips
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meet there is a red square that would be mapped to the red square in Figure
5.2.2 by the covering map ϕe. Hence, for every vertex ◦ in the gray grid there
is a red square above it. The vertices are labeled ◦, ∗ and • for the following
reason, the covering map does the following.

ϕe : SeΓ → S
e
Γ :

• 7→ (•a, •b),
◦ 7→ (◦a, ◦b),

∗ 7→

{
(•a, ◦b) if ∗ is on a horizontal line

(◦a, •b) if ∗ is on a vertical line
.

The standard flats in SeΓ are all disjoint. The flats are the points with symbol
•, the horizontal and vertical lines in SeΓ that exist of ∗ vertices and the gray R2

plane. For a continuation of this example, see Example 5.5.4.

5.4 Connection between the Salvetti complex,

and the set of residues of the associated

building

Corollary 5.4.1. We have that the poset AΓSf is isomorphic to the poset flats
(
SΓ
)
,

and hence

DΓ = Flag
(
AΓSf

)
∼= Flag

(
flats

(
SΓ
))

,

Geom(BAΓ
) ∼= Geom

(
Flag

(
AΓSf

))
∼= Geom

(
Flag

(
flats

(
SΓ
)))

.

Proof. We need to prove that the two posets AΓSf and flats
(
SΓ
)
are isomorphic.

By Lemma 5.3.16 (i) there is a bijection ψ1 : flats
(
SΓ
)
→ AΓSf . We want to

prove that it is an isomorphism between posets, i.e., we need to prove that for
cosets gA∆ and hA∆̃ that hA∆̃ ⊆ gA∆ if and only if they come from flats F̃ and F
such that F̃ ⊆ F . We first prove the “if” part. Suppose two F̃ ⊆ F ∈ flats(SΓ),
pick x ∈ F̃ , hence, by using the construction in the proof of Lemma 5.3.16

ψ1 : F̃ 7→ axA∆̃;

ψ1 : F 7→ axA∆.

We are left to prove ∆̃ ⊆ ∆. We have ϕ(F̃ ) = T∆̃ and ϕ(F ) = T∆. Hence,
T∆̃ ⊆ T∆ and ∆̃ ⊆ ∆. Now the “only if” part. Suppose hA∆̃ ⊆ gA∆, then we
have hA∆̃ ⊆ hA∆ = gA∆. From this it follows that ∆̃ ⊆ ∆ (also see Remark
1.1.5). Now consider the point x := •h0 ∈ SΓ. Then we have two flats F̃ and F
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(by Lemma 5.3.12) of the form F̃ (0) = xA∆̃ and F (0) = xA∆ . Since A∆̃ ≤ A∆, we
have F̃ ⊆ F .

The other isomorphisms follow from Theorem 4.5.3.

Remark 5.4.2. Corollary 5.4.1 is not true for SeΓ instead of SΓ, since flats in SeΓ
are all disjoint. However, the whole idea behind the exploded Salvetti complex
is exactly this. We will use the fact that these flats are disjoint to get an natural
map (a restriction quotient map) from SeΓ to Geom

(
BAΓ

)
in the next chapter.

5.5 Map between the exploded Salvetti com-

plex and the associated building

In this section we will construct a map between the universal cover of the ex-
ploded Salvetti complex and the associated building BAΓ

.This map will be a
restriction quotient map. In Lemma 5.3.14 we already proved that flats are dis-
joint. We will now first determine “how” disjoint they are and how they are
connected to each other.

In this section we will often use the action of AΓ on SΓ and SeΓ. This Action
was defined in Lemma 5.3.8. This was done by identifying AΓ with π1(SΓ), and
lifting closed paths in this group to paths in SΓ with basepoint •0 ∈ ϕ−1(•).
Similarly, by identifying AΓ with π1(SeΓ) such that this identification is preserved
by τ : SeΓ → SΓ, and now with basepoint •e0 ∈ ϕ−1

e ((•v)v∈V (Γ)) such that τ(•e0) =
•0. We also proved that this action equivariant (Lemma 5.3.8).

The following definition can only be defined for the exploded Salvetti complex.

Definition 5.5.1. As discussed in Remark 5.2.5, we know that every point in
SeΓ is associated to a unique torus. Similarly, for every vertex x ∈ SeΓ we write
T x for the associated torus T x of x, that being:

T x :=
∏
∗v=◦

(S1
v , ◦v)×

∏
∗v=•

{•v},where (∗v)v∈V (Γ) := ϕe(x)

i.e., the unique standard torus containing ϕe(x). By Lemma 5.3.15 we can also
associate a unique flat for every point, that we denote by Fx.

It follows directly that the dimension of the torus T x is precisely the size of the
set {v ∈ V (Γ) | ∗v = ◦}, with ϕe(x) = (∗v)v∈V (Γ).

Remark 5.5.2. Consider the situation as in Definition 5.5.1.

(i) One can easily determine (similar to the proof of Lemma 5.3.15) that for
every vertex x ∈ SeΓ, we have ϕe(Fx) = T x.

(ii) Let V (Γ) ⊇ ∆ := {v ∈ V (Γ) | ∗v = ◦}, where (∗v)v∈V (Γ) := ϕe(x) such that

T∆ = T x. By Lemma 5.3.12 we have τ(F
(0)
x ) = τ(xA∆) = τ(x)A∆ .
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Definition 5.5.3. Let SeΓ bet the universal cover the exploded Salvetti complex.
We already defined what vertices are in the universal cover (Definition 5.2.6) We
now define the following.

(i) An edge e = {x, y} in SeΓ is a 1-cube that is mapped (by the covering map
ϕe) to a 1-cube in
SeΓ (i.e. either to an interval [0, 1] or a circle S1).

(ii) A horizontal edge e = {x, y} is an edge in SeΓ that is a 1-cube that is
mapped by ϕe to a [0, 1] interval edge in SeΓ.

(iii) A vertical edge is an 1-cube that is mapped to a S1 circle by ϕe in SeΓ.

Example 5.5.4. We continue where we left of in Example 5.3.17. Consider the

case where Γ := •
a

•
b2
. The universal cover of the exploded Salvetti complex

is drawn in Figure 5.3.2. The vertical edges are the edges between two ◦-vertices
or two ∗-vertices and the horizontal edges are those between a •-vertex and a
∗-vertex or a ◦-vertex and a ∗-vertex. We will work further on this example in
Example 5.5.4.

Lemma 5.5.5. An edge e = {x, y} in SeΓ is vertical if and only if x and y are
contained in the same flat.

Proof. ⇒: Suppose e is a vertical edge. Hence, it covers a circle S1
v0

for a certain
v0 ∈ V (Γ), thus we can write

ϕe(e) =
∏
v∈∆

{◦v} × S1
v0
×
∏
v/∈∆
v ̸=v0

{•v},

for a certain ∆ ⊆ V (Γ) that spans a clique. This is an edge to and from the
point

∏
v∈∆{◦v} × {◦v0} ×

∏
v/∈∆
v ̸=v0
{•v}. Hence, both x and y are contained in

ϕ−1
e (T∆∪{v0}) ⊆ SeΓ while they are also connected by the edge e ⊆ ϕ−1

(
T∆∪{v0}

)
in SeΓ. Thus, they are in the same flat.

⇐: Suppose e is horizontal while x and y are in the same flat. This would mean
that e covers an Iv0 interval (for a certain v0 ∈ V (Γ)), i.e., ϕe(e) is the edge
between ∏

v∈∆

{◦v} ×
∏
v/∈∆

{•v} and
∏
v∈∆

{◦v} × {◦v0} ×
∏
v/∈∆
v ̸=v0

{•v},

for a certain ∆ ⊆ V (Γ) that spans a clique. This means that ϕe(x) and ϕe(y)
are not even in the same torus, hence x and y definitely cannot be in the same
flat.

We will now prove that horizontal edges are edges between flats, such that the
associated tori of these flats in SΓ are included in each-other with co-dimension
1.
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Lemma 5.5.6. Consider two points x, y ∈ SeΓ
(0)

with a horizontal edge e be-
tween them, such that the endpoints are contained in different flats Fx and Fy,
respectively. Then the following is satisfied:

(i) τ(x) = τ(y),

(ii) τ(Fx) ⊆ τ(Fy) is a co-dimension16 one subset.

(iii) τ(T x) ⊆ τ(T y) is a co-dimension17 one subtorus.

Proof. (i): This almost directly follows since Diagram (5.1) commutes and τ
retracts the [0, 1] part. We will prove this now in detail.

Since e is a horizontal edge we have

ϕ(e) =
∏
v∈∆

{◦v} × Iv0 ×
∏
v/∈∆
v ̸=v0

{•v},

hence, the vertices x and y correspond to the tori T∆ and T∆∪{v0} respectively.
Suppose τ(x) ̸= τ(y), then τ(e) is an edge between τ(x) and τ(y). Since ϕ is a
cover, there is a neighborhood U ⊆ SΓ of τ(x) that does not contain τ(y) and
such that ϕ|U is injective (by choosing U small enough). Now {τ(x)} ⊊ U , hence,
{ϕ(τ(x))} ⊊ ϕ(U), and also {τ(x)} ⊊ U ∩ τ(e) and {ϕ(τ(x))} ⊊ ϕ(U) ∩ ϕ(τ(e))
since ϕ is injective on U . However

{ϕ(τ(x))} ⊊ ϕ(U) ∩ ϕ(τ(e)) ⊆ ϕ(τ(e)) = τ(ϕe(e)) = τ (Iv0) = {•} = {ϕ(τ(x))},

which is a contradiction.
(ii): We have

τ(Fx)
(0) = τ(xA∆) = τ(x)A∆ ⊆ τ(x)A∆∪v0 = τ(y)A∆∪v0 = τ(Fy)

(0).

Now since Z|∆|+1 ∼= A∆×Z ∼= A∆∪{v0}, the statement follows, because the action
is free.
(iii): Since T x = T∆ ⊂ T∆∪{v0} = T y.

Example 5.5.7. We again continue from Example 5.5.4. The edges between
two vertices with the same symbol (i.e. two ◦, two ∗ or two • vertices (in Figure
5.3.2)) are vertical edges. Edges between two different symbols are horizontal.
They connect two different flats, these two different flats are disjoint and differ
by one dimension. The flats in Figure 5.3.2 are the following. The unique one
of dimension 2 i.e. the gray plane containing all ◦ vertices, this flat corresponds
to the complete torus TΓ or with unique spherical residue of rank two i.e. AΓ.
The flats of rank 1 are the lines which connect ∗ type points (remember we only
drew three of them while there is one for every line in the blue plane), these flats

16This has meaning, since Remark 5.3.6 tells us that a flat isomorphic is with Rn for a certain
n ∈ N.

17i.e. T x = Sk−1 ⊆ Sk = T y for a certain k ∈ N
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correspond with T{a} or T{b} and corresponds to cosets of the form gA{b} or gA{a}
with g ∈ AΓ. The flats of rank 0 are the points of the form • (we only drew two
in Figure 5.3.2) and correspond to cosets gA∅.

If we collapse the space SeΓ along these flats (i.e. every flat becomes a point),
we will obtain the geometric realization of the right-angled building defined in
Theorem 4.5.3. We will now go in more depth. The following was discussed by
Huang and Kleiner in [33].

Construction 5.5.8. We will construct a restriction quotient map q : Seg →
Geom(BAΓ

) from the universal cover of the exploded Salvetti complex to the
geometric realization of the associated building (See Definition 4.5.4). First, we
only define it on the vertices of SeΓ:

q : SeΓ
(0) → Geom(BAΓ

)(0) : x 7→ axA∆,

where ∆ ≤ V (Γ) such that T x = T∆ and ax ∈ AΓ is the element such that
(•e0)ax = x.

Lemma 5.5.9. Consider two vertices x, y ∈ SeΓ
(0)
, if there is a horizontal edge

e between them, then q(x) ⊊ q(y) (or q(x) ⊋ q(y)) as sets18 and rank q(x) =
rank q(y)− 1 (or rank q(x)− 1 = rank q(y) respectively).

Proof. We have by Lemma 5.5.6(iii) τ(T x) ⊆ τ(T y) with co-dimension one.
Hence,

q(x) = aτ(x)A∆x with T x = T∆x ,

q(y) = aτ(y)A∆y with T x = T∆y .

Hence, A∆x ⊆ A∆y . By Lemma 5.5.6 (i) the first statement follows. The second
statement follows from the fact that, since τ(T x) ⊆ τ(T y) with co-dimension
one, we have |∆x|+ 1 = |∆y|.

We will now prove, in some sense, the converse.

Lemma 5.5.10. Consider two cosets gA∆, hA∆′ ∈ AΓSf with gA∆ ⊆ hA∆′ and
|∆′| = |∆|+ 1. Then there exist x, y ∈ SeΓ and a horizontal edge e between them
such that q(x) = gA∆ and q(y) = hA∆′.

Proof. Since gA∆ ⊆ hA∆′ , one can choose h = g, hence, ∆ ⊆ ∆′ = ∆ ∪ {v0} for
a certain v0 ∈ V (Γ). Consider the vertex •g0 ∈ SΓ. By Lemma 5.3.10 we know
that

τ−1(•g0) ∼=
∏̃

v∈V (Γ)

(
[0, 1]v, •v

)
=

⋃
∆ ⊆

clique
V (Γ)

∏
v/∈∆

{•v} ×
∏
v∈∆

(
[0, 1]v, •v

) ,

18Since q(x) is a vertex in Geom(BAΓ) and thus correspond to a coset in AΓSf .
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here [0, 1] = • ◦ . Choose the edge from x := (•v)v ̸∈∆′ × (◦v)v∈∆′ ∈ τ−1(•g0)
and y := (•v)v ̸∈∆ × (◦v)v∈∆ ∈ τ−1(•g0). This edge is horizontal by construction.
While x ∈ ϕ−1

e (T∆′) and y ∈ ϕ−1
e (T∆).

Lemma 5.5.11. For two points x, y ∈ SeΓ with rank(T x) + 1 = rank(T y) and
τ(x) = τ(y), there is a horizontal edge e ⊆ SeΓ such that e = {x, y}.

Proof. Since τ(x) = τ(y) =: •′ ∈ SΓ
(0)
, we have by Lemma 5.3.10

x, y ∈
∏̃

v∈V (Γ)

(
[0, 1]v, •v

) ∼= τ−1(•′) ⊆ SeΓ.

This subspace only exist of horizontal edges. It is easy to check that they are
here just one horizontal edge apart since w.l.o.g. T x = T∆ ⊆ T∆∪{v} = T y.

Lemma 5.5.12. Consider two edges e1, e2 in SeΓ such that they are opposite in
a 2-cube, then we have

� if e1 is horizontal then e2 is horizontal;

� if e1 is vertical then e2 is vertical.

Proof. Suppose e1 and e2 are opposite in a 2-cube C. Then C is the product of
e1 and e′1 i.e. C = [0, 1]2 = e1 × e′1. Now we look at

ϕe(e1 × e′1) = ϕe(e1)× ϕe(e′1) ⊆ SeΓ =
∏̃

v∈V (Γ)
(Lv, •v) .

However, the cubes of the exploded Salvetti complex are always of the form either
S1 × S1, [0, 1]× [0, 1] or S1 × [0, 1]. Either way the opposite edges are always of
the same form (both a circle or both a [0, 1] interval). Hence, the image of e2 is
of the same form as e1, which is what we wanted to prove.

Construction 5.5.13 ([33, Section 5]). We continue where we left off in Con-
struction 5.5.8. Since vertices of vertical edges are mapped by q to the same
vertices and vertices of horizontal edges are mapped by q to two different points
which are cosets gA∆ and gA∆′ (where |∆| + 1 = |∆′|), hence, their image is
connected by an edge is Geom(BAΓ

). It makes sense to define the following.

q : SeΓ
(1) → Geom(BAΓ

)(1) :

e = {x, y} 7→

{
the edge {axA∆, axA∆′} if e is horizontal,

the point axA∆ if e is vertical.

We will now extend this to a restriction quotient map. A horizontal cube in
SeΓ is a cube where each of its edges is a horizontal edge, a vertical cube is
a cube such that each of its edges is a vertical edge. Every cube in SeΓ is a
product of horizontal cube and a vertical cube. The image of the vertex set of a
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horizontal cube spans a cube in Geom(BAΓ
) and the image of the vertex set of a

vertical cube is a vertex in Geom(BAΓ
). We thus can extend q to a cubical map

q : SeΓ → Geom(B). We can construct p also as a restriction quotient map as

follows. Let Ĥ be the set of all hyperplanes of SeΓ, let K̂ be the set of hyperplanes
dual to a horizontal edges in SeΓ. Then one can verify that we can identify q as
the following restriction quotient map

q = q : SeΓ ∼= X(Ĥ)→ X(K̂) ∼= Geom(BAΓ
).

Example 5.5.14. We will construct this restriction quotient map for the case

where Γ := •
a

•
b2
. In Figure 5.3.2 we drew a part of the universal cover of the

exploded Salvetti complex, which was also discussed in Example 5.3.5 and the
edges that are horizontal and vertical where discussed in Example 5.3.17. We
draw a portion of the universal cover again, additionally we draw the horizontal
edges thick (these are the edges between different flats).
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◦
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∗ ∗ ∗ ∗ ∗

∗
∗

∗
∗
∗

∗
∗

∗
∗
∗

◦ ◦

◦

◦

◦

◦

•
q−1({a})

•
q−1({a−2})

q→

•
aAb •

{a}

•
Aa

•
Aa,b

•
{a−2}

•
a−2Ab

Figure 5.5.1: The restriction quotient map

For every edge of the form e = {{a}, aAb} in Geom(BAΓ
) between a rank 0

residue (i.e. a chamber) and a rank 1 residue, there is one edge in SeΓ that maps
to this edge. For every edge of the form e = {aAb, A{a,b}}, there are Z many
edges in SeΓ that will map to this edge. The inverse image of A{a,b} is Z×Z. If we
want to see this map as a restriction quotient map we will choose the following
hyperplanes K̂ ⊆ Ĥ (Ĥ the set of all hyperplanes). The two hyperplanes in each
red [0, 1]× [0, 1] cube we keep in K̂. For every green strip we keep the hyperplane
that is the line that goes through the whole length of the strip dual to the edge
of the form ◦ ∗ . Having this we can verify that

q = q : SeΓ ∼= X(Ĥ)→ X(K̂) ∼= Geom(BAΓ
).

We discuss some properties of this map.

Lemma 5.5.15 ([33, p566]). This restriction quotient map is an AΓ-equivariant
map.
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In Example 5.5.14 we discussed the cardinality of the inverse image of vertices
in Geom(B). We will now prove the following general result.

Lemma 5.5.16. For every vertex gA∆ ∈ Geom(BAΓ
)(0), we have q−1(gA∆)

(0) ∼=
Z|∆|.

Proof. The set q−1(gA∆) contains all the vertices that are contained in a unique
flat F of type T∆, thus by Lemma 5.3.13 F (0) = xA∆ for x ∈ F . It now follows
since this action is free and A∆

∼= Z|∆|.

Lemma 5.5.17. Consider a cube σ ⊆ Geom(BAΓ
) and take x ∈ int(σ). Let r be

the minimal rank of all vertices of σ(0). We have q−1(x) ∼= Zr.

Proof. See [33, Lemma 5.1].

Remark 5.5.18 (Alternative construction Exploded Salvetti complex). The ex-
ploded Salvetti complex can also be constructed differently. This was done by
Kleiner and Bestvina in [9] for right-angled Artin groups of dimension 2 (i.e. Γ
does not contain cliques of size ≥ 3). In this paper they also construct a map to
the so-called “flat space”, this space coincides with the modified Deligne complex
and geometric realization of the associated building, and this map is precisely
the restriction quotient map from Construction 5.5.13.

The section we just discussed we did a lot to prove that we have a restriction
quotient map to Geom

(
BAΓ

)
. This will be useful in next section where we will

prove that a restriction quotient map to Geom
(
BAΓ

)
satisfying Lemma 5.5.17,

will be equivalent to a blow-up data. This equivalence we will then use in Section
5.7. Unfortunately this thesis primarily gives a detailed description of these
objects rather than giving the useful properties they have. For example, the
reader of this thesis will probably have little clue that theorems like Theorem
6.2.2 as the results in Section 6.5, Section 6.6 and Section 6.7 use the theory we
discussed just now.

5.6 Fiber functor

In this section if we write BAΓ
we mean the right-angled buildings associated to

the right-angled Artin group AΓ (Definition 4.5.4). If we just write B we mean
an arbitrary right-angled building of a fixed type Γ.

Definition 5.6.1 ([33, Section 4.2]). Suppose q : X → Y is a restriction quotient
map between two CAT(0) cube complexes. Denote Face(Y ) to be the poset of
faces of Y viewed as a category (i.e. the objects are the faces and the morphisms
are the inclusions). Denote CCC to be the category of nonempty CAT(0) cube
complexes and whose morphisms are the convex cubical embeddings.
The following contravariant functor Ψq is called the fiber functor of the restriction
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quotient map q.

Ψq : Face(Y )→ CCC :

σ 7→ q−1(y) where y is an interior point of σ,

iσ1,σ2 7→
(
q−1(y2) ↪→ q−1(y1)

)
which exists by Lemma 2.3.17,

for subcubes σ1 ⊆ σ2. This functor is independent of the choice of yi ∈ int(σi)
([33, Lemma 4.5 (2)]).

Definition 5.6.2. A contravariant functor Ψ : Face(Y )→ CCC is 1-determined
if it satisfies that for every cube σ ∈ Face(Y ) and every vertex v ∈ σ(0) we have

Im
(
Ψ(σ) ↪→ Ψ(v)

)
=

⋂
v⊊e⊆σ(1)

Im
(
Ψq(e) ↪→ Ψq(v)

)
.

Lemma 5.6.3 ([33, Lemma 4.14]). A fiber functor Ψq of a restriction quotient
map q is 1-determined.

Theorem 5.6.4 ([33, Theorem 4.15]). Let Y be a CAT(0) cube complex and
Ψ : Face(Y )→ CCC be a 1-determined contravariant functor. Then there exist
a CAT(0) cube complex X and a restriction quotient map q : X → Y such that
the associated fiber functor (as in Definition 5.6.1) Ψq : Face(Y ) → CCC is
equivalent by a natural transformation to Ψ.

Sketch of proof. We only give the construction of the cube complex X. We start
with the following cube complex⊔

σ∈Face(Y )

(
σ ×Ψ(σ)

)
.

For every inclusion σ1 ⊆ σ2 we glue σ1 × Ψ(σ2)(⊆ σ2 × Ψ(σ2)) to σ1 × Ψ(σ1)
using the following map

σ1 ×Ψ(σ2)
idσ1×Ψ(iσ1,σ2 )−−−−−−−−→ σ1 ×Ψ(σ1).

This map is an injection. The resulting space is then X. We then define the
restriction quotient map as

q : σ ×Ψ(·) 7→ σ.

We will now instead of constructing a contravariant functor from a restriction
quotient map, we will construct such a functor from the blow-up data of a build-
ing.

Definition 5.6.5 ([33, Page 571]). Let B be an arbitrary right-angled building
of type Γ, with a blow-up data H := {hR : R → Zrank(R)} (see Definition 4.4.1).
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We define the fiber functor associated with the blow-up date H as the following
functor.

ΨH : Face
(
geom(B)

)
→ CCC :

σ 7→ Rrank(Rσ),

iσ1,σ2 7→ hRσ2 ,Rσ1
,

where Rσ is the residue associated to the unique vertex v ∈ σ(0) of minimal
rank19. The map hRσ2Rσ1

is defined in Lemma 4.4.3 (which we can use since
Rσ2 ⊆ Rσ1 if σ1 ⊆ σ2). The cube complex Rn has a cubical structure where we
identify its 0-skeleton with Zn.

We give the commuting Diagram form Lemma 4.4.3 again as a reminder.

R′ R

Zrank(R′) Zrank(R)

i

hR′ hR

hR′,R

(5.3)

As one would expect we now get a Lemma similar to lemma 5.6.3.

Lemma 5.6.6 ([33, Lemma 5.9 and Lemma 5.10]). We have that ΨH of Defini-
tion 5.6.5 is a 1-determined contravariant functor.

Lemma 5.6.7. Let qH : X → Geom(B) be the restriction quotient map con-
structed in Theorem 5.6.4 from a fiber functor ΨH : Face

(
Geom(B)

)
→ CCC

associated with blow data H. Then qH satisfies20 Lemma 5.5.17.

Proof. Consider a cube σ ⊆ Geom(B) and x ∈ int(σ). We have

q−1(σ) = σ ×Ψ(σ) = σ × Rrank(Rσ),

where the second equality comes from Definition 5.6.5. Hence, we have

q−1(w) = {w} ×Ψ(σ) = {w} × Rrank(Rσ) ∼= Rrank(Rσ).

Definition 5.6.8 ([33, Defintion 5.3]). Let q : Y → Geom(B) be a restriction
quotient map from a CAT(0) cube complex to Geom(B), with B an arbitrary
right-angled building of type Γ. Suppose q satisfies Lemma 5.5.17. Let Ψq be the
associated fiber functor Ψq : Face

(
geom(B)

)
→ CCC (form Definition 5.6.1).

Then the 1-data associated of q is collection of maps {fR | R rank 1 residue}
where

fR : R → Ψq(vR) :

c 7→ Ψq(ivR,ec)
(
Ψq (ec)

)
,

19This exists from the definition of how these cubes are defined Construction 4.3.4.
20i.e. qH(x) ∼= Zr, where r is the minimal rank of all the vertices of σ(0) and where σ is the

cube in Geom(B) such that x ∈ int(σ)
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where vR is the vertex in Geom(B) that correspond with the residue R =: Rv,
ec is the 1-cube between c and vR in Geom(B). The map ivR,ec : vR ↪→ ec is
the inclusion of the vertex vR in the edge ec. Since the vertices in Geom(B) are
the spherical residues of B, we will also write Rv, to indicate that the residue
R corresponds to the vertex v. By definition (see Definition 5.6.1) fRv coincides
with

fRv
: Rv → q−1(y) ∼= Rrank(Rv) :

c 7→ im
(
q−1(yc) ↪→ q−1(y)

)
This embedding exists by Lemma 2.3.17,

with yc an interior point of ec.

Theorem 5.6.9 ([33, Theorem 5.11]). LetH := {hR | R rank 1 residue} a blow-
up data (Definition 4.4.1) and ΨH the associated fiber functor (Definition 5.6.5).
Let q be the restriction quotient map constructed in Theorem 5.6.4. Then the
1-data of q is the blow-up data we started with.

Remark 5.6.10. We will give a summary of the previous theorems and defini-
tions

blow-up data
{hR|R rank 1 residue of B}

1 determined fiber functor ΨH
Face(Geom(B))→CCC

1-data assosiated to
Ψq

1 determined fiber functor Ψq

Face(Geom(B))→CCC

restriction quotient map q
X→Geom(B)

satisfying Lemma 5.5.17

Theorem 5.6.9

Definition 5.6.5

Lemma 5.6.7

Natural
transformation

Definition 5.6.8 Definition 5.6.1

This diagram commutes in the sense that if we start in one place and apply the
theorem/definition in this order one would get maps/sets equivalent with the one
we start with.

5.7 Fiber equivalences applying on Exploded

Salvetti complex

Theorem 5.7.1 ([33, Theorem 5.19]). Let B be an arbitrary right-angled building
of type Γ with a blow-up data

H = {hR : R → Zrank(R) | R a spherical residue}

such that each map hR is bijective. Then X constructed from this blow-up data
(Theorem 5.6.4) is isomorphic to the universal cover of the exploded Salvetti
complex SeΓ.

Sketch of proof. We construct a covering map p : X → SeΓ. Having this we prove
that X ∼= SeΓ by looking at the lift p̃ : X → SeΓ.
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As corollary of this theorem one also can prove that there is only one right-
angled building of type Γ and thickness q⃗ := (Zi)i∈V (Γ), which we already stated
in Theorem 4.3.9.

Corollary 5.7.2 ([33, Corollary 5.21]). Let B1 and B2 be two right-angled build-
ings of type Γ. Suppose that the rank 1 residues of both buildings are countably
infinitely big. Then they are isomorphic buildings.

Sketch of proof. Consider a bijective blow-up for each of these buildings21, call
them respectivelyH1 andH2. Construct the associated restriction quotient maps

q1 : Y1 → Geom(B1);
q2 : Y2 → Geom(B2).

By Theorem 5.7.1, there are covering maps

p1 : Y1 → SeΓ;
p2 : Y2 → SeΓ.

They then left to isomorphism

p̃1 : Y1 →̃ SeΓ;
p̃2 : Y2 →̃ SeΓ.

By22 Lemma 5.1.11 these maps descend to isomorphisms

p̃1 : geom(B1) →̃ geom(BAΓ
);

p̃2 : geom(B1) →̃ geom(BAΓ
).

21It is easy to prove (as exercise) that this always exists given that each rank 1 residue is
cardinality |Z|.

22One first verifies that these maps p̃i are cubical isomorphism.
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6
Quasi-isometries

There are many interesting quasi-isometric right-angled Artin groups. One of
them is the set of right-angled Artin groups for which the defining graph Γ is
a tree of diameter at least 3 [6], as well as a generalization [5]. The interesting
papers of Huang [32], [33] and [31], classify some classes rigid (i.e. they are quasi-
isometric if and only if they are isomorphic) right-angled Artin groups.

This section is not only interesting for the results themselves but also to see
application on why this Salvetti complex is useful, especially in Section 6.9.

We start this section with the Definition of quasi-isomeric spaces, as well as some
theorems for right-angled Artin groups. After this section we will delve in the
constructions of Huang en Kleiner, there we will use complexes we have discussed
like the Salvetti complex, as well as a new complex being the extension complex.

6.1 Definitions

Definition 6.1.1 (Quasi-isometric). Let (M1, d1) and (M2, d2) be two metric
spaces. Let f :M1 →M2 be a map satisfying the following:

(∃A,B ∈ N)(∀x, y ∈M1)

(
1

A
d1(x, y)−B ≤ d2

(
f(x), f(y)

)
≤ Ad1(x, y) +B

)
(6.1)

and
(∃C ∈ N)(∀z ∈M2)(∃x ∈M1)

(
d2
(
z, f(x)

)
≤ C

)
. (6.2)

Then we call f a quasi-isometry and the spaces M1 and M2 quasi-isometric. If
only equation (6.1) is satisfied we call f and quasi-isometric embedding.

Definition 6.1.2. Two finitely generated groups are quasi-isometric if their
Cayleygraphs (with the word metric) are quasi-isometric23.

23It can be shown that this is independent of the choice of the finite generating set of these
groups.

85



Theorem 6.1.3 ([26, theorem 1]). Two right-angled Artin groups are isomorphic
if and only if their defining graphs are isomorphic.

Lemma 6.1.4 ([8]). Let Γ be a graph and Λ a subgraph. Then the injection
AΛ ↪→ AΓ induces a quasi-isometric embedding between SΛ → SΓ.

Sketch of proof. Clearly there is an isometric embedding between SΛ ↪→ SΓ.
By lifting this to an isometric embedding between SΛ ↪→ SΓ, we get what we
wanted.

Remark 6.1.5. There are plenty of examples of non-isomorphic right-angled
Artin groups that are quasi-isometric. For example free groups of finite rank ≥ 2
are all quasi-isometric. In Section 6.9 we will prove that for every right-angle
Artin group AΓ for which the defining graph has diameter at least 3, there are
non-isomorphic Artin groups that are quasi-isometric to AΓ. However, there will
be classes of right-angle Artin group that are rigid i.e. they are quasi-isometric
to each other if and only if they are isomorphic.

6.2 Role of exploded Salvetti complex

Definition 6.2.1 (Geometric action [27]). Let G be a group that acts on a
metric space (X, dX). This is a geometric action if the following is satisfied:

(i) The action is isometric (i.e. for every element g ∈ G and every pair of
points x1, x2 ∈ X we have dX(x1, x2) = dX(x

g
1, x

g
2)).

(ii) The action is properly discontinuous (i.e. for all g ∈ G and x ∈ X there
exist a neighborhood of x being Ugx ⊆ X such that U g

gx ∩ Ugx = ∅).

(iii) The action is cocompact (i.e. X/G is compact).

The following theorem follows from discussion in Section 5.7, after doing some
more work see [33, Section 5 & 6].

Theorem 6.2.2 ([33, Theorem 6.5]). Let B be any right-angled building of type
Γ. Let there be a restriction quotient map q : Y → Geom(B) that satisfies Lemma
5.5.17. If a group G acts geometrically on Y, then is G quasi-isometric to AΓ.

6.3 Extension complex

In this section we will see what the Extension complex is of a right-angled Artin
group. It will turn out these complexes will contain a lot of information of the
possible quasi-isometric class of a right-angled Artin group.

Definition 6.3.1. Consider a right-angled Artin group AΓ and let SΓ be the
universal cover of the Salvetti complex. The extension complex PΓ of AΓ is the
flag complex that consists of the following:
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(i) The set of vertices P(0) is the set of parallel24 classes of geodesics in SΓ.

(ii) Two vertices v, w ∈ P(0) are connected by a line in P(1) if there exist
geodesics g1 ∈ v and g2 ∈ w such that ⟨ga, g2⟩ spans a 2-flat in SΓ.

(iii) A set of k vertices form a k-simplex in P(k) if and only if these points form
a clique in P(1).

Definition 6.3.2 ([34, Definition 1.2]). Let AΓ be a right-angled Artin group.
The extension graph P(Γ)(1) of Γ is the graph with vertex set {g−1vg | g ∈
AΓ, v ∈ V (Γ)} and two vertices are adjacent if and only if they commute.

As the notation of the extension graph already does imply, we do have the
following.

Property 6.3.3 ([32, Lemma 4.2]). The extension graph of a right-angled Artin
group is isomorphic with the 1-skeleton of its extension complex.

Lemma 6.3.4 ([33, Definition 3.5]). There is a one-to-one correspondence be-
tween k-simplices in P(Γ) and parallel classes of standard (k + 1) flats in SΓ.

Proof. Exercise.

We will give some examples of extension complexes, these complexes are almost
always infinite. This example should give the reader some intuition in these
complexes. We also recommend the reader to draw sketches of the universal
covers of their Salvetti complexes to see the parallel classes yourself, and try to
deduce from this what the extension complex is.

Example 6.3.5. (i) Let Γ be the complete graph on n vertices, hence a finite
type right-angled Artin group. Then the extension complex P(Γ) is also
finite. It is the n-simplex.

(ii) Let Γ be a set of n ≥ 2 points without any edges i.e. our Artin group is
just the free group of rank n. The extension complex P(Γ) is a space of
countably infinite disjoint points (0 simplices) and no higher dimensional
simplices.

(iii) Let Γ be a star with at least 3 vertices (or equivalent a star that is not
a complete graph). Then the extension complex is a star consisting of
countably infinite many leafs.

(iv) Let Γ be a tree of diameter at least 3. Then the extension complex is an
infinite graph where a vertex is a leaf or a vertex with countably infinite
many neighbors from which there are also countably infinite many neigh-
bors that are not leafs (and maybe also countably infinite many neighbors
that are leafs (this depends on Γ)).

24two geodesics in SΓ are parallel if they contained in a R2 subspace and disjoint. The parallel
classes are the equivalence classes of the equivalence relation generated by being parallel.
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(v) Let Γ be a square, then the extension complex consists of countably infinite
many squares such that every vertex is contained in infinitely many squares.

In the figures of following examples we color the vertices (and hence the genera-
tors of AΓ) of the defining graphs. We color a vertex in the extension complex in
the color of the generator if this parallel set maps to this generator by the cov-

ering map ϕ : SΓ → SΓ. Consider the following defining graphs Γ1 :=
• •
•

,

Γ2 := • • • , Γ3 := • • • • and Γ4 :=

• •

••
. The exten-

sion complexes of these graphs are drawn in Figure 6.3.1.

P(Γ1) = • •

•
P(Γ2) = •

•

•

•

•
•

•

•

•
•

•

P(Γ3) = •

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

• •
•

•

•
•

•

P(Γ4) =

• ••

•

•

•

•

•

• •• •

•

•

Figure 6.3.1: Extension complexes of the graphs Γ1,Γ2,Γ3 and Γ4.

Remark 6.3.6. It is known that all free groups of rank ≥ 2 are quasi-isometric.
Clearly by Example 6.3.5 (ii) are the extension complexes of these Artin groups
also isomorphic. The extension complexes of Example 6.3.5 (iii) are also all
isomorphic to each other, and these groups Z × Fn−1 (Fn−1 the free group of
rank n− 1, where n− 1 is the amount of leafs) are all quasi-isometric. We could
ask the question:

Question. Is AΓ1 quasi-isometric to AΓ2 if and only if the extension
complexes are isomorphic P(Γ1) ∼= P(Γ2).

In Theorem 6.6.3 en Theorem 6.7.3 we give partially positive answer to this
question. However, in general this is not the case. For the only if part we will
see in Section 6.8 that the Artin groups defined by P5 := • • • • •
and P4 := • • • • are quasi-isometric while there extension graphs are
not (you can prove this by seeing that P(P5) contains vertices of distance 2 to a
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leaf, while such vertices do not exist in P(P4)). The “if” part is also not true in
generals ([31, Example 6.38]). The Artin group of the following two graphs are
not quasi-isometric while their extension complexes are isomorphic.

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

Before going over the quasi-isometric implications these structure will have, we
finish this section with a theorem that already shows the importance of the
extension complex .

Theorem 6.3.7 ([34, Theorem 1.3]). Let AΓ an d AΛ be two right-angled Artin
groups. If Λ is a subgraph of, P(Γ)(1), then AΛ is isomorphic to a subgroup of
AΓ.

6.4 Outer automorphism group of a right-angled

Artin group

One of the classes of rigid right-angled Artin groups, is the class with finite outer
automorphism group. At first this may sound random, however as the following
properties will show, having a finite outer automorphism group is equivalent with
a concrete structure of the defining graph.

Property 6.4.1 ([47, 32, page 3]). The outer automorphism group Out(AΓ) of
a right-angle Artin group, is generated by the following elements

(i) For v ∈ V (Γ), ϕv : m 7→

{
v−1 if v = m;

m if m ∈ V (Γ) \ {v}.

(ii) Graph automorphism of Γ.

(iii) Transvections : for v, w ∈ V (Γ) with lk(w) ⊆ St(v) we have

ψv,w : m 7→

{
mv if m = w;

m if m ∈ V (Γ) \ {w}.

(iv) Partial conjugation: for v ∈ V (Γ) with Γ \ St(v) disconnected, let C ⊆ Γ
be a connected component we have

θv,C : m 7→

{
v−1mv if m ∈ V (C);

m if m ∈ V (Γ) \ V (C).
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Corollary 6.4.2. The outer automorphism group Out(AΓ) is finite if and only if
there are no vertices v, w ∈ V (Γ) such that lk(w) ⊆ St(v) or such that Γ \ St(v)
is disconnected.

Sketch of proof. Follows from Property 6.4.1 and the fact that only the Transvec-
tions (iii) and Partial conjugations (iv) have infinite order, and (i) and (ii) com-
mute.

6.5 Atomic right-angled Artin groups

In this subsection we will discuss a class of rigid right-angled Artin groups. These
will be at most 2-dimensional.

Definition 6.5.1 ([9, Definition 1.5]). A connected graph Γ is atomic if it sat-
isfies the following:

(i) every vertex v ∈ V (Γ) has degree at least 2;

(ii) there are no cycles of length smaller than 5;

(iii) for every vertex v ∈ V (Γ), the graph Γ \ St(v) is connected.

A right-angled Artin group is called Atomic if its defining graph is atomic.

Theorem 6.5.2 ([9, corollary 1.7]). Atomic right-angled Artin groups are quasi-
isometric if and only if they are isomorphic.

Sketch of proof. Suppose there is a quasi-isometry, they prove that there is a
special kind of isomorphism between the associated flat spaces25 ([9, Theorem
8.10]), and from this they prove that there is an isomorphism between the defining
graphs.

6.6 Finite Out(AΓ) case

In this section we will see that right-angled Artin groups that have finite outer
automorphism groups are quasi-isometric if and only if they are isomorphic. The
extension complex is here crucial, as it will follow from following lemma.

Lemma 6.6.1 ([32, Lemma 4.6]). Let AΓ and AΛ be two right-angled Artin
groups with Out(AΓ) and Out(AΛ) finite. Every quasi-isometry χ : SΓ → SΛ
induces a simplicial isomorphism χ∗ : P(Γ) →̃ P(Λ). If only Out(AΓ) is finite
then χ∗ is still a simplicial embedding.

Lemma 6.6.2 ([32, Corollary 4.16]). If two right-angled Artin groups AΓ and AΛ

with finite outer have isomorphic extension complexes, then they are isomorphic.

25these spaces correspond with the associated building, see Remark 5.5.18
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Sketch of proof. Suppose we have an isomorphism between extension complexes
χ∗ : P(Γ) → P(Γ̃). The idea is now to reconstruct a map χ′ : AΓ → AΓ̃ from

χ∗. We will define this map as follows. If x ∈ SΓ
(0)
, denote {Fi}i the set of

maximal standard flats in SΓ containing x. Every maximal flat Fi correspond
with a maximal simplex ci in P(Γ) also see Lemma 6.3.4. By applying χ∗ on
these simplices, we get a set of simplices {c̃i}i := {χ∗(ci)}i and then picking the
corresponding maximal flats in SΓ̃, we get a set of {F̃i}i of flats in SΓ̃. We then
define

χ′ : AΓ → AΓ̃ : x 7→ ∩iF̃i. (6.3)

However, in general ∩iF̃i is not just one point, it could be empty or bigger. It
turns out in the finite Out(AΓ) case we always have that ∩iF̃i ̸= ∅ after doing a
some work this is a singleton. Having this map one can try to find an isomorphism
between the defining graphs

Theorem 6.6.3 ([32, Theorem 1.1]). Two right-angled Artin groups AΓ and AΛ

with finite outer automorphism group are isomorphic if and only if they are quasi-
isometric if and only if their extension complexes are isomorphic.

Proof. (1) ⇒ (2): Trivial. (2) ⇒ (3): By Lemma 6.6.1. (3) ⇒ (1): By Lemma
6.6.2.

If only one group has finite outer automorphism group, Lemma 6.6.1 still gives
us the following result.

Theorem 6.6.4 ([32, Theorem 1.2]). Let AΓ and AΛ be two right-angled Artin
group such that AΓ as finite outer automorphism group, then the following are
equivalent.

(i) AΓ and A∆ are quasi-isomorphic;

(ii) AΛ is isomorphic to a finite index subgroup of AΓ;

(iii) The extension complexes P(Γ) are P(Λ) isomorphic.

6.7 Infinite Out(AΓ) case

Definition 6.7.1 ([31, Defnition 1.1]). A graph Γ is weak of type I if it satisfies
the following:

(i) there exist no vertex v ∈ V (Γ) such that Γ \ St(v) is disconnected;

(ii) there do not exist two vertices v, w ∈ Γ such that d(v, w) = 1 and Γ =
St(v) ∪ St(w).

We call a right-angled Artin group of weak type I if its defining graph is weak
type I.
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The point of this section is to prove that week type I Artin groups are rigid.
This is done very similar to finite outer automorphism case. We now generalize
Lemma 6.6.1.

Theorem 6.7.2 ([31, Theorem 1.11]). Let AΓ and A∆ be two right-angled Artin
groups. Suppose that Out(AΓ) and Out(A∆) do not contain any nonadjacent
transvections. Then every quasi-isometry χ : SΓ → S∆ induces a simplicial
isomorphism χ∗ : P(Γ) →̃ P(∆).

Theorem 6.7.3 ([31, Theorem 3.31]). Suppose AΓ and AΓ̃ are two right-angled
Artin groups of weak type I. then they are quasi-isometric if and only if they are
isomorphic if and only if their extension complexes are isomorphic.

The proof is similar as the finite out case.

Remark 6.7.4. Suppose we have two right-angled Artin groups such that their
extension complexes are isomorphic. We would like to prove that they are
quasi-isometric. The proof of Lemma 6.6.2 gives us an idea how to do this;
by defining our map as in equation (6.3). However, in general ∩iF̃i. could be
empty. For example consider the following two graphs Γ1 = • • • •
and Γ2 = • • • •

• . Their Artin groups are quasi-isometric (see Section

6.8) and their extension complexes are also isomorphic. However, for arbitrary
isomorphism χ : P(Γ1) →̃ P(Γ2). The map χ∗ from equation (6.3) will most
likely yield to a situation where ∩F̃ = ∅ (you can easily find such an isomor-
phism by drawing their extension complexes (also see Example 6.3.5 (iv)) and
then looking at corresponding flats in SΓ1 and SΓ2 , and seeing that we will get
disjoint flats).

There are more classes (see the papers by Huang, in particular [31]) of rigid
right-angled Artin groups then discussed here.

6.8 Defining graph a tree of diameter ≥ 3

Theorem 6.8.1. All right-angled Artin groups for which their defining graph is
a tree of diameter at least 3 are quasi-isometric.

Theorem 6.8.1 was first proven by Behrstock and Neumann in [6] as a corollary
of a more general theorem of quasi-isometric classification of fundamental groups
of graph manifolds. A different proof was given by Margolis in [37] using JSJ
tree of cylinders decomposition of a right-angled Artin Group. Neumann also
proved a more general result in [5] for Artin groups that have bisimilar defining
graphs.

It is also interesting to notice that many of these quasi-isometric groups do
not have isomorphic extension complexes. Nonetheless, they do look like each
other, since if we remove all leafs of all these extension complexes then they
are isomorphic (they will al be infinite trees where every vertex has countably
infinite many neighbors).
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We will not prove Theorem 6.8.1; instead, we will prove another theorem (The-
orem 6.9.4) in next section. This theorem will give a quasi-isometry for some
trees of diameter at least 3. Moreover, we will also show (Corollary 6.9.10) that
the theorem that we will prove is insufficient to find quasi-isometries for all trees
of diameter at least 3.

6.9 k-double of a defining graph

Let AΓ be a right-angled Artin group. In this section we construct right-angled
Artin groups that are finite index subgroups of AΓ. Hence, they are also quasi-
isometric. The main theorem we will prove gives us a process that can construct
from a defining graph Γ a bigger defining graph Γ′ such that the Artin groups
associated to them are quasi-isometric. This process can be applied to any graph
(not just to trees). It will show that for every right-angled Artin group with
diameter of defining graph at least 3 there are non-isomorphic quasi-isometric
right-angled Artin groups. These constructed quasi-isometric Artin groups will
never be of weak type I or have finite outer automorphism group.

Definition 6.9.1. Let Γ be a defining graph of an Artin group. Take L a
subgraph of V (Γ), and let k be a natural number ≥ 2. Denote Γ{L, k} for the
k-double of Γ along L this is the graph obtained by gluing k copies of Γ \L to L.

Example 6.9.2. In Figure 6.9.1 an example is shown for a graph Γ and its
2-double along the star of v ∈ V (Γ).

Γ =
•
v

•

•

• • •
Γ{St(v), 2} =

•
v

•

•

•• • •
•
.

Figure 6.9.1: Graph Γ and its 2- double along St(v).

The point is now to prove that after doing a k-double the resulting right-angled
Artin group is quasi-isometric to the Artin group we started with. We will prove
this by finding a quasi-isometry between the universal covers of the Salvetti
complexes, for this we will need the following well-known lemma in topology.

Lemma 6.9.3 (The general lifting lemma [41, Lemma 79.1]). Let p : E → B be
a covering map. Consider two points e0 ∈ E, b0 ∈ B such that p(e0) = b0. Let
f : Y → B be a continuous map, with f(y0) = b0. Suppose Y is path connected
and locally path connected. The map f can be lifted to a map f̃ : Y → E such
that f̃(y0) = e0 and the following diagram commutes26

26by definition of lifting [41, Chapter 9 Section 54]
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(Y, y0) (E, e0)

(B, b0)

f

f̃

p
(6.4)

if and only if
f∗(π1(Y, y0)) ⊆ p∗(π1(E, e0)),

here f∗ : π1(Y, y0) → π1(E, e0) : q 7→ f ◦ q. Furthermore, if such a lift exists, it
is unique.

The proof of this lemma is not necessarily interesting for our theory of right-
angled Artin groups. That said, the construction of this map f̃ will be crucial
to proof Theorem 6.9.4 (ii) & (iii). Hence, we give this construction.

Sketsh of proof. We want to construct a map f̃ : Y → E such that diagram
(6.4) commutes. Pick y ∈ Y arbitrary, since Y is path connected we find a
path α : [0, 1] → Y such that α(0) = y0 and α(1) = y. Now consider the path
α′ := f ◦ α : [0, 1]→ B. We now lift this to a path α̃′ : [0, 1]→ E starting at e0
in the cover E. We then define

f̃(y) := α̃′(1).

We now have sufficient amount of information to prove that right-angled Artin
groups of k-doubles are quasi-isometric to the group we started with. The proof
itself is not difficult or does not need crazy ideas. It just follows after you notice
that the Artin group of the k-double is isomorphic to the kernel of the morphism
α in next theorem.

Theorem 6.9.4. Let AΓ be a right-angled Artin group, and v0 ∈ V (Γ) a vertex.
Consider the morphism α that we define on the generators as follows:

α : AΓ → Z/kZ : s 7→

{
1 if s = v0;

0 if s ∈ V (Γ) \ {v0}.

Then the following holds:

(i) The kernel of α is isomorphic to the fundamental group π1

(
k

SΓ
)
, where

k

SΓ is a k-fold cover of SΓ, such that we have π1

(
k

SΓ
)
∼= AΓ{St(v),k}.

(ii) There is a deformation retract27 χ :
k

SΓ → SΓ{St(v),k} that induces a quasi-
isometry χ̄ : SΓ → SΓ{St(v),k}.

27i.e. a map which is a continuous deformation, it implies that the fundamental groups
coincide
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(iii) The extension complex P(Γ) of Γ is isomorphic to the extension complex
P(Γ{St(v), k}) of Γ{St(v), k}. Moreover, this isomorphism is induced by
χ.

Hence, AΓ and AΓ{st(v),k} are quasi-isometric.

We will prove Theorem 6.9.4 via constructing a covering map of the Salvetti
complex, the idea of the proof of Theorem 6.9.4 (i) comes from [9, Section 11].
However, one can still prove that ker(α) ∼= AΓ{st(v),k} without using the Salvetti
complex but rather in a combinatorial way. This is done by Bell in [7].

Proof. Before proving the real stuff, we will need to do two parts of preparation.

Part 1: Construction of
k

SΓ. Since the kernel of α is a subgroup of π1(SΓ), we

have that there is a covering space
k

SΓ of SΓ that is a k-fold cover (i.e. for all
points x ∈ SΓ the size of the inverse image of the covering map of x is k). Such

that π1(
k

SΓ) ∼= ker(α). This covering space is precisely SΓ/ker(α). We construct
k

SΓ explicitly. Let ψ be the covering map between the universal cover SΓ and
k

SΓ,
i.e.

ψ : SΓ →
k

SΓ :

• 7→ •ker(α).

The set of vertices in the universal cover SΓ of SΓ (i.e. the set ϕ−1
1 (•)) is in

bijection with the set of elements in AΓ. The kernel of ϕ correspond to the

set •ker(ϕ)0 ⊆ SΓ
(0)

(action from Definition 5.3.9 and •0 was the basepoint such
that the lifting of every paths in π1(SΓ) starts at •0), here •0 is the lift of the
trivial path in π1(SΓ) and •g0 correspond with the endpoint of the lift of the
path g ∈ AΓ = π1(SΓ). We know v0 ∈ AΓ \ ker(α). Such that v0 /∈ ker(α) and

v0 /∈ •ker(α) (where we identify AΓ with SΓ
(0)
), while vk0 ∈ •ker(α). The endpoints

of every other path corresponding to a generator w ∈ V (Γ)\{v0} ⊆ AΓ = π1(SΓ)
is also in •ker(α)0 , because w ∈ ker(α). Hence ψ(vk0) is a closed loop from •ker(α)
to •ker(α) , and so is ψ(w) for all w ∈ V (Γ) \ {v0}.

Consider an arbitrary cliques C in Lk(v0). Hence, C ∪ {v0} forms a clique,
construct the stretched torus k ·S1×

∏
C S

1 (this is just a |C|+1 torus where the
circle corresponding to v0 has length k) This stretched torus is going once around
the torus in the w-direction for all w ∈ C (since after having w ∈ Lk(v0) one
time it is already 1) and going k many times around the torus in the v0-direction
(also see Figure 6.9.2 as an example when v0 ∼ w in Γ and k = 2).
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SΓ ⊇

• 1

• w

•
v0

•w
2

•
v20

•
wv0

• v
2v

• wv
2

•
w2v20 SΓ ⊇

•

◦

◦

◦

2

SΓ ⊇

• 1

◦w ≡ 1

•
v0

◦
wv0 ≡ v0

◦ v20 ≡ 1

◦
wv20 ≡ 1

Figure 6.9.2: Showing a part of the universal cover (if v0 ∼ w), the 2-fold cover
and the Salvetti complex containing v0 ∈ π1(SΓ) or its lifts

Doing this for every clique in Lk(v0) and if we glue these stretched tori together

on the k·S1 part, we get a space that we call L (isomorphic to (k·S1)×
∏̃

Lk(v0)
S1).

Now consider Γ0 := Γ \ {v0} (i.e. the graph Γ without the vertex v and all the
edges containing v). For all w ∈ V (Γ \ {v0}) we have w ∈ ker(α). We construct
the Salvetti complex SΓ0 of Γ0. We then attach SΓ0 k-many times to L along the
edges that correspond to vertices in V (St(v0)) ∩ V (Γ0). See Figure 6.9.3 as an
example.

L =

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
2

SΓ ⊇

•1 ◦ w

•
v0 ◦

v0w ≡ v0

◦
v20 ≡ 1

◦
v20w ≡ 1

◦
w′ ≡ 1

◦
ww′ ≡ 1

◦
v0w

′ ≡ v0
◦
v0ww

′ ≡ v0

Figure 6.9.3: Showing a part of the 2-fold cover if v0 ∼ w ∼ w′ ̸∼ v0.

To summarize. The k-fold cover can be constructed as follows. One starts with
the subgraph that is the star containing v0 and its neighbors we get a fan of
stretched tori in the v direction. On these tori we glue k times the Salvetti
complex of Γ \ {v0}.

Part 2: Construction of χ. By Lemma 6.9.3 there is a map ψ : SΓ →
k

SΓ =
SΓ/ker(ϕ) : x 7→ xker(α), this is a continuous map that is also a covering. We now
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construct a map

χ :
k

SΓ → SΓ{St(v,k)},

that does the following it collapses every stretched torus to a normal torus, i.e.

(k ·S1)×S1 → S1×S1, this is a homotopy equivalence since a path in
k

SΓ consists
of going over circles S1 or over the circle of length k being k ·S1 (the map χ just
makes the length of our circle of length k again length 1).

In Figure 6.9.4 we draw the situation for k = 2, and we double around the star
around •, where it happens to be the case that • is adjacent to • in Γ and also
is • adjacent to •, while • is not adjacent to •, i.e. • • • ⊆ Γ. Finely we
get • • •

•
⊆ Γ{St(•), 2}.

(i): Since χ is a deformation retract the fundamental groups; π1(
k

SΓ) and π1(SΓ{St(v),k})
are equal (see [41, Chapter 9 Section 58 & Theorem 58.7.]). Hence, we have that
AΓ{St(v),k}} is isomorphic to a subgroup of AΓ with index k being the kernel of
α.

k

SΓ ⊇

• ◦

• ◦

◦ ◦

◦ ◦

◦ ◦
χ→ • ◦• ◦

◦ ◦

◦ ◦

◦ ◦

= • ◦• ◦

◦ ◦

◦ ◦

◦ ◦

χ→

Figure 6.9.4: Collapsing length k circle to length 1 circle.

(ii): The composition χ ◦ ψ is a continuous map. Since SΓ{St(v),k} is a covering
of SΓ{St(v,k)}, we can apply the general lifting lemma 6.9.3 to find χ. Hence, we
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have the following commuting diagram.

SΓ{St(v),k} SΓ

SΓ{St(v0),k}
k

SΓ SΓ

ϕ2 universal cover
ψ

χ̄

ϕ1 universal cover

χ
cover

To prove that χ : SΓ → SΓ{St(v),k} is a quasi-isometry, we will need to use the
construction used in the proof of Lemma 6.9.3. We claim that χ is a quasi-
isometry with the following parameters

1

k
dAΓ

(x, y)− k ≤ dAΓ{St(v),k}(χ(x), χ(y)) ≤ kdAΓ
(x, y) + k.

First notice that it is sufficient to prove this on the 1-skeleton in SΓ, and it is
sufficient to prove that

1

k
dAΓ

(x, •0)− k ≤ dAΓ{St(v),k}(χ(x), •
′
0) ≤ kdAΓ

(x, •0) + k,

where •′0 := χ(•0) the basepoint in SΓ{St(v),k} (such that for every path in

SΓ{St(v),k} its lifting starts at •′0). Consider a vertex g in SΓ
(0)

= AΓ. There
is a (minimal) path p := (e1, e2, . . . , el) between •0 and g consisting of edges (the
image by ϕ1 of this path in SΓ coincides with the element g ∈ AΓ = π1(SΓ)). The
image of every edge ei by ϕ1 is a generator of π1(SΓ). Now we look at the image
of these edges by χ◦ψ. If ϕ1(ei) is not equal to the edge/generator in π1(SΓ) cor-
responding to v0 ∈ V (Γ) or to an element in Lk(v0). Then χ

(
ψ(ei)

)
correspond

to one of the edges of the form e′i1 , e
′
i2
, . . . e′ik (the k copies of ei) in SΓ{St(v0),k},

either way it maps (by χ◦ψ) to a closed edge. If ϕ1(ei) correspond to an element
in Lk(v0) then it just maps to a closed edge ei in SΓ{St(v0),k}. If however, ϕ1(ei)
corresponds to the generator v0, then is χ ◦ ψ(ei) = • ∈ SΓ{St(v),k} not a closed

edge, however χ◦ψ

eiei · · · ei︸ ︷︷ ︸
k terms

 = e′i will be a closed edge. Hence, after k edges

in the path p = (e1, e2, . . . , el) there is at least 1 edge in χ ◦ ψ(e1, e2, . . . , el)
that is closed. Hence, we have that the amount of edges in χ ◦ ψ(p) is at least
⌊ l
k
⌋ ≥ l

k
− (k − 1). If we now lift χ

(
ψ(p)

)
to a path starting at •′0 = χ(•0) in

SΓ{St(v0),k} this path will end at χ(g), this is by definition of the construction of
χ in Lemma 6.9.3, and the lift consist of at least l

k
− (k−1) edges. We should be

careful even though we proved that a path p of length l in SΓ maps to a path p′ of
length at least l

k
− (k−1) in SΓ{St(v0),k}, it does not mean p′ is a path of minimal

length between •′0 and χ(g) in SΓ{St(v0),k}. Anyway since χ◦ψ is surjective every
possible path will be reached. We conclude

1

k
dAΓ

(x, •0)− k ≤ dAΓ{St(v),k}(χ(x), •
′
0) ≤ dAΓ

(x, •0).
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Hence, we proved that χ satisfies equation (6.1).

To prove that it also satisfies (6.2), it is sufficient to prove that χ is subjective on

the set of vertices S(0)

Γ → S
(0)

Γ{St(v),k}. This is the case since the vertices S
(0)

Γ{St(v),k}

are in bijection with the closed paths in S(0)
Γ{St(v),k}, because χ is a deformation

retract it is in bijection with the closed paths in
k

SΓ, However since SΓ is also

the universal cover of
k

SΓ, these closed paths are all reached by paths starting at

•0 and ending in a vertex of SΓ
(0)

. One can easily check that the map χ does
exactly this surjective (See construction of χ in Lemma 6.9.3).

(iii) part 1: We first prove that the image of a geodesic l ⊆ SΓ under χ is
again a geodesic. Let l be a geodesic in SΓ i.e. l is the connected component of
the inverse image of a loop ei ∈ π1(Sg) under ϕ1, such that l(0) = xA{ei} for any
x ∈ l(0) (see Lemma 5.3.12).

� Case 1: ei = v0, then l will cover the stretched circle in
k

SΓ and hence,
χ
(
ψ(l)

)
will cover a circle (that correspond to ei but now in SΓ{St(v),k},

more precisely the lift of k concatenated ei in SΓ to SΓ will map by ψ ◦ χ
to a circle ei in SΓ{St(v),k}).

� Case 2: ei ̸= v0 but ei ∼ v0, then l will cover a circle in
k

SΓ and hence,
χ
(
ψ(l)

)
will cover a circle as well (that correspond to ei but now in

SΓ{St(v),k}).

� Case 3: ei ̸= v0 and ei ̸∼ v0, then l will cover a circle in
k

SΓ and hence,
χ
(
ψ(l)

)
will cover a circle as well (that correspond to one of the copies

ei1 , ei2 , . . . , eik in SΓ{St(v),k}).

Either way we can say that l covers a circle e in SΓ and χ(ψ(l)) is a circle ẽ
in SΓ{St(v0),k}. Pick y ∈ l(0) arbitrary, there is a path p in SΓ between x and y
that is completely contained in l. Now consider the path χ

(
ψ(p)

)
in SΓ{St(v),k}

(this path only consists of concatenated ẽ’s). We can lift this path to SΓ{St(v),k}
starting at χ(x) and is hence contained in a flat l′ in ϕ−1

2 (ẽ), by Lemma 6.9.3
the endpoint is χ(y). The flat l′ in SΓ{St(v),k} that is the connected component
in ϕ−1

2 (ẽ) containing χ(x) thus also contains χ(y). We now have that χ(l) ⊆ l′.
We prove the other inclusion, consider z ∈ l′ let p′ be the path in l′ from χ(x) to
z this path maps by ϕ2 to say m ∈ Z concatenated ẽ in SΓ{St(v0),k}. If we then
lift m · e ∈ π1(SΓ) to SΓ starting at x (in Case 2 & 3), lift km · e ∈ π1(SΓ) to
SΓ starting at x (in Case 1). Then one can check that the endpoint of this lift is
mapped by χ to z.
(iii) part 3: Secondly, We prove that χ is surjective on the set of geodesics.
Pick l a geodesic of SΓ{St(v),k}, that covers ẽ. We have proven in (ii) that χ is
surjective on the set of vertices. Pick y ∈ l then there is a vertex x ∈ SΓ such
that χ(x) = y, one can easily verify that geodesic xAe =: l′ is mapped by χ to
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l. Hence, χ induces a subjection between geodesics. Completely similar we can
prove that χ sends 2 dimensional flats to 2 dimensional flats, and prove that χ
is surjective on the set of 2-flats.
(iii) part 3: We prove that χ maps parallel classes to parallel classes. Two
geodesics l and l′ are parallel if there is a sequence of geodesics l = l2, l2, . . . , lm =
l′ such that li and li+1 are parallel in the same 2 dimensional flat (i.e. in Z×Z).
Hence, we only have to prove that if l and l′ are parallel in a 2 dimensional flat,
then χ(l) and χ(l′) are parallel in a 2 dimensional flat.

So suppose l and l′ are in the same 2-flat F , hence that ϕ1(l) = ϕ1(l) = e1 ∈
π1(SΓ) for a certain loop e1. This loop corresponds with a generator in V (Γ).
Suppose ϕ1(F ) = e1 × e2 a certain 2 dimensional torus.

We saw that χ sends 2 dimensional flats to 2 dimensional flats, and that χ is
surjective on the set of 2-flats. Hence, ϕ2

(
χ(F )

)
= ẽ1 × ẽ2 for certain two

generators in π1(SΓ{St(v),k}). Hence, we just have to prove that χ(l) and χ(l′) are
either disjoint or coincide (which is equivalent of being parallel in R2). Suppose
not then χ(l) covers ẽ1 in SΓ{St(v),k} and χ(l′) covers ẽ2 in SΓ{St(v),k}. However,
we know that both χ(l) and χ(l′) covers an edge that corresponds to e1 or to one
of its k copies e11 , e12 , . . . , e1k in SΓSt(v0),k) (if e1 ̸= v0 and e1 ̸∼ v0) . Either way
the generators of these copies are never adjacent in Γ{St(v0), k}, while ẽ1 ∼ ẽ2
are adjacent in Γ{St(v0), k}. We conclude that ϕ2

(
χ(l)

)
= ẽ1 = ϕ2

(
χ(l)

)
.

Denote [l] as the parallel class of a geodesic, then we have proven that χ
(
[l]
)
⊆

[χ(l)]. Suppose χ
(
[l]
)
⊊ [χ(l)]. Then there is at least one pair χ(l1) ∈ χ

(
[l]
)
and

χ(l2) ∈ [χ(l)] \ χ
(
[l]
)
such that they are parallel in a 2-flat being χ(F ), hence

we can choose l′1, l
′
2 ∈ F satisfying the same (since χ is surjective on the set of

geodesics). However now it follows form previous discussion that if l′1 and l′2 are
not parallel then χ(l′1) and χ(l

′
2) are not. Hence, we have proven that χ induces

a bijection between parallel classes.
(iii) part 4: We prove that if l and l′ spans a 2 flat in SΓ (i.e. they are contained
in a 2-flat but not parallel) then χ(l) and χ(l′) span a 2 flat in SΓ{St(v),k}. This
follows from part 2, and since there we saw that 2 flats mapped to 2 flats.
Until now, we have proven that χ induces an embedding from P(Γ) to P(Γ{St(v), k}).

(iii) part 5: Finely we prove that χ induces an isomorphism between the ex-
tension complexes. We know that 2-flats map to 2-flats, hence if [l] and [l′]
are connected in P(Γ) then [χ(l)] and [χ(l′)] are connected in P(Γ{St(v0), k}).
Suppose there is a pair of parallel classes [l] and [l′] such that [l] and [l′] is not
connected in P(Γ) but χ

(
[l]
)
= [χ(l)] and χ

(
[l′]
)
= [χ(l′)] are connected in

P(Γ{St(v0), k}), then there are χ(l1) ∈ χ
(
[l]
)
and χ(l2) ∈ χ

(
[l′]
)
that span a

certain 2-flat call this χ(F ). We now look at the 2-flat F in SΓ, take any two
geodesics in this two flat l′1 and l′2 that span this flat (i.e. l′1 ∩ l′2 is a singleton).
Then χ(l′1) and χ(l

′
2) span the 2-flat χ(F ) in SΓ{St(v0),k}. Without loss of gener-

ality χ(l′1) is parallel with χ(l1) and χ(l′2) with χ(l2). Hence χ(l1) ∈ [χ(l)] and
χ(l2) ∈ [χ(l′)] = χ

(
[l]
)
, we conclude l1 ∈ [l] and l2 ∈ [l′] such that [l] and [l′] are

connected in P(Γ).
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Remark 6.9.5. Notice that in Theorem 6.9.4 we not only constructed quasi-
isometries between some right-angled Artin groups, we also proved that their
extension complexes are isomorphic. Hence, we again have a partial answer to
the question described in Remark 6.3.6.

To get some intuition in how these constructions work we give some examples.

Example 6.9.6. (i) Consider P2 := •a •b •c , we will double around the

star of the first vertex, hence we get P2{st(·), 2} = •a •b
•c

•c
′
. The 2-fold

cover
2

SP3 = Sp3/ker(ϕ) of SΓ where

ϕ : AP3 → Z/2Z :

a 7→ 1,

b, c 7→ 0,

is precisely the first complex in Figure 6.9.4.

(ii) We apply the construction in Theorem 6.9.4 to Γ :=

• •

••
around the

vertex v :=•. In Figure 6.9.5, the Salvetti complex of Γ is drawn as well
as the Salvetti complex of Γ0 := Γ \St(•), the space L (see proof Theorem
6.9.4), the k-fold cover and the Salvetti complex of Γ{St(•), 2} drawn.

SΓ = • ◦

◦

◦

◦

◦

◦

◦

◦

SΓ0 = •

◦

◦

◦

◦

◦

L = • • ◦

◦

◦

◦

◦

◦

◦

2

SΓ = • • ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
= • • ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
χ→ SΓ{St(•),2} = • ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

Figure 6.9.5: Double procedure for Γ.

We get Γ{st(•, 2)} :=
• •

•
•

•
.
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(iii) At last, we will show for an easy example what χ does to the universal
cover of SΓ, where Γ := • • . If we double this graph around a vertex

we get Γ{St(·), 2} := • • • , hence we have that the free group of rank

3 is an index 2 subgroup of the free group of rank 2. The universal cover
is drawn in Figure 6.9.6. We see that every other edge (corresponding to
one generator) is being contracted in an alternating way to one vertex.

SΓ =

• ••

•

•

•

•

•

← ←
←

←

•

•

•
←

←

←

•

•• ←

←

←

•

•• ←

←
←

χ→

•••

•

•

•

•

•

•

•

•

•

••

•

••

Figure 6.9.6: From the Cayleygraph of rank 2 free group to the Cayleygraph of
the rank 3 free group.

Remark 6.9.7. (i) In Theorem 6.9.4 we found for every right-angled Artin
group AΓ with diameter of the defining graph at least 3, a quasi-isomorphic
right-angled Artin group that is not isomorphic to AΓ (Theorem 6.1.3).
Since if a graph Γ has diameter at least 3, and we double around a vertex
v0 such that max{d(v0, w) | w ∈ V (Γ))} ≥ 3, then the graph Γ{St(v0), k}
will not be isomorphic to Γ. This however does not conflict with theorems
like Theorem 6.5.2 and Theorem 6.6.3, where we proved that some classes
of Artin groups are quasi-isometrically rigid, but since applying a k-double
around a star we always create a graph that does not satisfy Definition
6.5.1(ii) or Property 6.4.1 (iv) we never obtain an Artin group in one of
these classes.

(ii) From Theorem 6.9.4 (ii) it follows that the group AΓ is quasi-isometric
to AΓ{St(v),k}. However, this in itself already follows from the fact that
AΓ{St(v),k} is a finite index (that being k) subgroup of AΓ and hence, quasi-
isomorphic.

(iii) Theorem 6.9.4 gives a lot of quasi-isometric non-isomorphic RAAGs. How-
ever, even though for every tree T of diameter at least 3, we can construct a

tree T ′ by applying this Theorem multiple times to P4 := • • • •
such that T ′ will contain T as a subtree, this is not sufficient to prove Theo-
rem 6.8.1. It only proves that there is a quasi-isometric embedding between
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AT and AP4 by Lemma 6.1.4. There is of course also a quasi-isometric em-
bedding from AP4 to AT by the same lemma. However, embeddings in both
directions don’t always imply that the spaces are quasi-isometric.

One could suspect that maybe by using only Theorem 6.9.4 one can prove The-
orem 6.8.1. Suppose you have a tree Γ of diameter at least 3, and suppose by
apply finite amount of times Theorem 6.9.4 one gets a tree Γ′ such that this tree
can also be constructed by applying finite amount of times Theorem 6.9.4 on P4.
Then we conclude that AΓ and AP4 are quasi-isometric, since AΓ

∼=
q.i.
AΓ′ ∼=

q.i.
AP4 .

However, the following Lemma proves this is not always possible.

Theorem 6.9.8. Let Γ a graph and v ∈ V (Γ) a vertex, denote l(v) to be the
minimum distance between v and a leaf28 of Γ. After applying Theorem 6.9.4 on
Γ, l(v) will be unchanged.

Proof. First of all observe yourself that we can assume that Γ is connected. Take
v, w ∈ V (Γ) (we allow v = w), denote Γ̃ to be the graph obtained by a k-doubling
around the star St(w). Denote

lΓ(v) := min{d(v, g) | g is a leaf of Γ};
lΓ̃(v) := min{d(v, g) | g is a leaf of Γ̃}.

Since Γ is a subgraph of Γ̃ we have lΓ̃(v) ≤ lΓ(v). Suppose lΓ̃(v) ⪇ lΓ(v), and
suppose ṽ ∈ V (Γ̃) is a leaf such that d(v, ṽ) = lΓ̃(v). Suppose Γ \ St(w) has n
components, then Γ̃ \ St(w) has k · n-components. Denote C1 for the set of n
components of Γ̃ \ St(w) which already existed in Γ \ St(w). Denote C2 for the
set of kn−n new components of Γ̃ \St(w) that did not exist in Γ \St(w). Let p
be the shortest path from v to ṽ in Γ̃. This path starts in a component c of C1.
If we never leave this component then p ⊆ Γ , and we are done. Hence, at some
point we go through the star St(w) and go to another component c̃. We claim
that these are the only two components in which p is contained. Suppose not,
then we encounter at least 3 components, if so we go at least 2-times through
the star St(w). However, then we can skip one of the components (and make
our path shorter) in between the first and last component, this new path will be
shorter since a minimal path between two vertices in the star St(w) can always
be contained in the star itself (See Definition 2.2.5). Hence, we encounter St(w)
only once in p, to go from component c to c̃, this also implies that ṽ ∈ c̃. This
component c̃ is thus a component of C2. If we now look at the component c′ ∈ C1

from which c̃ is copy. This component has the same connection vertices on St(v)
and hence we can look at this component and pick the corresponding v′ (for
which ṽ is the copy in c̃ and hence, is also a leaf), and change p by the path
where we replace p ∩ c̃ by its copy in c′. We have found a path from v to v′ of
the same length as p, hence, lΓ̃(v) ≥ lΓ(v).

28i.e. l(v) := min{d(v, g) | g is a leaf of Γ}
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Corollary 6.9.9. Let LΓ be the set of all minimal distances to leafs of vertices
in Γ (i.e. LΓ := {lΓ(v) | v ∈ Γ}). Suppose a graph Γ̃ is constructed from Γ by
applying Theorem 6.9.4. Then LΓ = LΓ̃.

Proof. Take ṽ ∈ V (Γ̃), if29 ṽ ∈ V (Γ) then we are done by Theorem 6.9.8. If
ṽ ∈ V (Γ̃)\V (Γ), then there exists v ∈ V (Γ) such that ṽ is one of its (k) doubles.
It is easy to see that Lg̃(ṽ) = Lg̃(v)(= lΓ(v)), since if we change of the idea of
what the subgraph that was the original graph is from Γ that contains v to Γ′

that contains ṽ (and Γ′ ∼= Γ) we get what we wanted.

Corollary 6.9.10. There exists no graph, such that it can be constructed from
both P4 and P5 by applying Theorem 6.9.4.

Proof. The graph P5 := • • • • • contains a vertex such that the
minimum distance to a leaf is 2 = l(v), while this does not exist in P4 :=
• • • •.

It would be very nice to get some generalization of Theorem 6.9.4 to non-right-
angled Artin groups. Maybe if we only ask that if St(v) is a right-angled subgraph
a proof is mutatis mutandis.

In Corollary 6.9.10 we see that we cannot find Γ3 such that we can construct this
form both P4 and P5 even though they are quasi-isometric, however the extension
complexes where not even isomorphic (see Remark 6.3.6). So we actually did not
need 6.9.8, since Theorem 6.9.4 (iii) already told us that the extension complexes
need to be the same. Nevertheless, it is still interesting to know this property is
preserved.

29Here we see Γ again as a subgraph of Γ̃
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Conclusion and discussion

In this thesis we saw complexes associated to Artin groups. We proved that
the Deligne complex is a building in the right-angled case. We saw that these
complexes occurs again in the K(π, 1) conjecture and in the study of quasi-
isometric right-angled Artin groups. Many result of quasi-isometric right-angled
Artin groups are not touched in this thesis. Neither are here any result about
quasi-isometric non-right-angled Artin groups discussed. It could be interesting
in further research in what extend Theorem 6.9.4 is true for non-right-angled
Artin groups. For right-angled Artin groups one could try to find the class of
groups for which it is satisfied that they are quasi-isometric if and only if their
extension complexes are isomorphic. We proved that the Deligne complex for
non-right-angled Artin groups is not a building. However, since it looks like a
building (in the sense that it is made out of apartments of the same type), it
would be interesting in what extend the results in building theory are true for
these complexes.

105



Nederlandse samenvatting

Geometrie en Topologie van Artin Groepen (Ge-

ometry and topology of Artin groups)

In deze masterproef worden Artin groepen onderzocht, met een nadruk op recht-
hoekige Artin groepen. Hierbij staat de wisselwerking tussen de algebräısche
structuren en hun geometrische realisaties centraal. Deze start met een intro-
ductie van Coxeter groepen en hun Tits-representaties, die de basis vormt voor
de constructie van het Davis complex. Gebruikmakend van dit complex con-
strueert men het Salvetti complex, een topologische ruimte waarvan de funda-
mentele groep juist de Artin groep is die geassocieerd is aan de Coxeter groep
waarvan men vertrekt. Een analoog concept van het Davis complex voor een
Coxeter groep is het Deligne complex voor een Artin groep. Dit complex is
voor een rechthoekige Artin groep een equivalent object als een (Tits-)gebouw,
waarvan de kamers de elementen in de Artin groep zijn. Ook bespreken we het
onopgelost probleem de K(π, 1)-conjecture die een link heeft met beide het Sal-
vetti complex en het Deligne complex. Verder bekijken we voor rechthoekige
Artin groepen structuren zoals het exploded Salvetti complex en het extension
complex. De universal cover van het exploded Salvetti complex is hier, net als
dat van het Salvetti complex een CAT(0)-cube complex en het heeft een natu-
urlijk verband met de geometrische realisatie van het geassocieerde gebouw. Het
extension complex is interessant in de studie van quasi-isometrische classificatie
van rechthoekige Artin groepen.
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[27] Cornelia Druţu and Michael Kapovich. Geometric group theory. With an
appendix by Bogdan Nica, volume 63 of Colloq. Publ., Am. Math. Soc. Prov-
idence, RI: American Mathematical Society (AMS), 2018.

[28] Eddy Godelle. Artin-Tits groups with CAT(0) Deligne complex. J. Pure
Appl. Algebra, 208(1):39–52, 2007.

[29] Brayton Gray. Homotopy theory. An introduction to algebraic topology, vol-
ume 64 of Pure Appl. Math., Academic Press. Academic Press, New York,
NY, 1975.

[30] Frédéric Haglund and Frédéric Paulin. Arborescent constructions of build-
ings. Math. Ann., 325(1):137–164, 2003.

[31] Jingyin Huang. Quasi-isometry classification of right-angled Artin groups
II: several infinite out cases. Preprint, arXiv:1603.02372 [math.GT] (2016),
2016.

[32] Jingyin Huang. Quasi-isometric classification of right-angled Artin groups.
I: The finite out case. Geom. Topol., 21(6):3467–3537, 2017.

[33] Jingyin Huang and Bruce Kleiner. Groups quasi-isometric to right-angled
Artin groups. Duke Math. J., 167(3):537–602, 2018.

[34] Sang-Hyun Kim and Thomas Koberda. Embeddability between right-angled
Artin groups.. Geom. Topol., 17(1):493–530, 2013.

[35] Ian J. Leary. A metric Kan-Thurston theorem. J. Topol., 6(1):251–284,
2013.
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Figure 6.9.7: Davis complex of type P4 := • • • •.
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